
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from  the m icrofilm  master. U M I 

films the text d irectly from the original o r copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may be 

from any type o f computer printer.

The q u a lity  o f th is  reproduction is dependent upon the qua lity  o f the 

copy subm itted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send U M I a complete 

manuscript and there are missing pages, these w ill be noted. Also, i f  

unauthorized copyright material had to be removed, a note w ill indicate 

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and 

continuing from  le ft to right in equal sections w ith small overlaps. Each 

original is also photographed in one exposure and is included in reduced 

form at the back o f the book.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6”  x 9”  black and white 

photographic prints are available for any photographs or illustrations 

appearing in  th is copy fo r an additional charge. Contact U M I directly to 

order.

UMI
A Bell & Howell Information Company 

300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

A TIME-AVERAGED APPROACH TO WAVE EVOLUTION FROM DEEP
WATER TO SHALLOW WATER

by 

Jianlu Xu

B E . (Hohai University) 1984 
M.S. (University o f Hawaii, Manoa) 1991

A  dissertation submitted in partial satisfaction o f the 
requirements for the degree o f

Doctor o f Philosophy

in

ENGINEERING:

C iv il Engineering 

in the

GRADUATE DIVISION 

o f the

UNIVERSITY o f CALIFORNIA, BERKELEY

Committee in charge:

Professor Rodney J. Sobey, Chair 
Professor Mostafa A. Foda 

Professor W illiam  C. Webster

1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

UMI Number: 9703326

UMI Microform 9703326 
Copyright 1996, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized 
copying under Title 17, United States Code.

UMI
300 North Zeeb Road 
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

The dissertation o f Jianlu Xu is approved :

\ 4  AC
Chair Date

J L -  / r  m is '

. . . .

J  Date

£ > e c  n.mr
Date

University o f California, Berkeley 

1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

TABLE OF CONTENTS

Page

ACKNOW LEDGMENTS....................................................................................................vi

1. INTRODUCTION...............................................................................................................1

1.1 Wave Transformation In Coastal Regions..............................................................1

1.2 Methodology........................................................................................................... 3

1.3 Scope and M ajor Assumptions...............................................................................6

1.4 Organization o f This Dissertation .........................................................................7

2. M ATHEM ATICAL FO RM ULATIO N.......................................................................... 9

2.1 Conservation Equations ....................................................................................... 9

2.2 Wave-Averaged Conservation Equations.........................................................  11

2.3 Depth-Integrated And Wave-averaged Equations................................................16

2.4 Bottom Friction And Energy Dissipation.............................................................19

3. LITERATURE REVIEW .................................................................................................23

3.1 Fluid Motions In The Nearshore Zone................................................................. 23

3.2 Wave Transformation Modeling...........................................................................26

3.3 Open Boundary Conditions (OBC).......................................................................29

3.4 Numerical Scheme................................................................................................33

4. APPARENT STRESS CLOSURE..................................................................................37

4.1 Layer-Averaged Scale Parameters In Closure Solution......................................42

4.2 Fourier Approximation Wave Theory................................................................. 45

4.3 Solution Surfaces..................................................................................................47

4.4 Closed Integral Equations In One Spatial Dimension.........................................65

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4.5 Closed Integral Equations In Two Spatial Dimensions.......................................65

5. TRANSIENT W AVE PROPAGATION IN  A  ONE-DIMENSIONAL SPACE 69

5.1 Characteristic Equations ......................................................................................69

5.2 Characteristic Properties....................................................................................... 73

5.3 Boundary Conditions............................................................................................ 75

5.3.1 Open Boundary C onditions..................................................................... 76

5.3.2 Typical Boundary Conditions.................................................................. 78

5.4 Case Studies.......................................................................................................... 79

Case I Evolution o f an In itia l Water Mound..................................................... 79

Case II-Waves Advance Over A  Horizontal Bed.............................................83

Case II I Wave Propagation Over a Ripple Bed................................................ 88

Case IV  Waves Propagation Over A  Slope......................................................93

5.5 Simulation o f Waves Propagation at Egmond Beach...................................... 100

6. MODELING OF WAVE PROPAGATION IN  TWO SPATIAL DIM ENSIONS 105

6.1 Characteristic Equations..................................................................................... 105

6.2 Characteristic Properties .................................................................................... 109

6.3 Numerical Schemes..............................................................................................113

6.3.1 Major Issues.............................................................................................. 113

6.3.2 Bi-Characteristics M ethod........................................................................114

6.3.3 Interpolation Scheme................................................................................ 119

6.3.4 Stability Criterion...................................................................................... 120

6.4 Open Boundary Conditions................................................................................. 121

6.5 Case Studies........................................................................................................ 123

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Case I- Evolution o f an In itia l Water M ound................................................. 123

Case II Advance o f Normally Incident Waves .............................................. 127

Case III Propagation o f Obliquely Incident Waves........................................ 132

6.6 Wave D irection....................................................................................................139

6.7 Simulation O f Wave Focusing By a Submerged Shoal..................................... 141

7. MODELING OF W AVE REFLECTION AND SEDIMENT TRANSPORT.............143

7.1 Modeling o f Wave R eflection............................................................................ 148

7.2 Sediment Transport Modeling ........................................................................... 149

8. CONCLUSIONS.............................................................................................................153

BIBLIO G RAPHY...............................................................................................................155

APPENDIX A. QUASI-LINEAR GOVERNING EQUATIONS FOR MEAN W AVE

PARAMETERS IN  ONE SPATIAL D IM ENSION...............................161

APPENDIX B. QUASI-LINEAR GOVERNING EQUATIONS FOR MEAN W AVE

PARAMETERS IN  TWO SPATIAL DIMENSIONS.............................165

APPENDIX C. CHARACTERISTICS AND CHARACTERISTIC EQUATIONS FOR

SHALLOW WATER W AVE EQUATIONS......................................... 174

APPENDIX D. CHARACTERISTICS IN  TWO SPATIAL DIM ENSIONS................. 193

APPENDIX E. NUMERICAL DETERMINATION OF BI-CHARACTERISTIC AND

INTEGRAL COM PATIBILITY EQUATIONS L Y ............................. 204

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

ACKNOWLEDGMENTS

I wish to express my appreciation to the members o f my dissertation committee, 

Professor Rodney J. Sobey, Professor Mostafa A. Foda and Professor W illiam  C. 

Webster, for their review o f the manuscript and suggestions. I am particularly grateful to 

Professor Sobey fo r his inspiration over the last few years, and for all his assistance and 

advice during the course o f this research.

I also owe a debt o f gratitude to Professor Hsieh Wen Shen w ith whom I have 

numerous discussions when I was a research assistant. Though these discussions are not 

directly related to the current research, he taught me many practical and effective research 

approaches.

I would also like to sincerely thank Ms Dihua Zhao, a visiting scholar at UC 

Berkeley, for sharing her rich experience in numerical modeling. Also I want to thank 

fellow students Jingsong Lai and Chiming Huang for their friendship.

Finally, I wish to tru ly thank my wife, Su Yang, fo r her unflagging support and 

patience throughout this entire process.

This work was performed at the University o f California, Berkeley, and made 

possible in part by financial support through the Lee Fellowship, a Graduate Research 

Assistantship for the Dan Francisco Bay/Delta Model and the Hans Albert Einstein 

Memorial Fellowship.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1 INTRODUCTION

1.1 Wave Transformation in Coastal Regions

The coastline, the boundary between land and sea, experiences continuous changes in 

shape and position upon the action o f external forces. Depending on the characteristics o f 

the external forcing, this change may have time scales ranging from geological time to a 

single wind-wave period, and spatial scales ranging from the size o f a continent to the wave 

length o f a sand ripple. To coastal engineers, the main concern is the short-term variations 

caused by small-scale, short-term flu id motions. One o f the most common and most 

important short-term flu id motions o f the sea water is wind waves which bring frequent and 

powerful hydrodynamic forces to the shallow areas o f a coast.

In a wind field, waves form and grow by receiving energy from the wind. The scale and 

strength o f the waves depend primarily on three factors: the wind velocity, a fetch length and 

a wind duration. The wind waves are three-dimensional in nature, and irregular in amplitude, 

period and direction. After leaving the wind field, the developed wind waves propagate 

across the ocean, dispersing and losing little o f their energy. When the dispersed waves 

approach the coast, they transform into swells which are almost two-dimensional in shape, 

with nearly uniform periods and long crest-lines. As the water depth decreases toward the 

shoreline, swells exhibit characteristic shallow-water behavior similar to those o f periodic 

waves. The shallow-water transformation commences when the waves "feel" the sea bottom 

and are affected by its presence. This means in return that the sea bottom receives some 

influences from the wave motion.

The salient features o f wave transformation in the shallow sea are refraction and 

shoaling. Refraction is the consequence o f a change in wave celerity with water depth, local

1
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current velocity and wave period. Wave refraction tends to orient crest-lines parallel to 

bottom contours. Shoaling is the consequence o f a change in  propagation velocity o f the 

wave energy flux. As the water shallows, the energy flux velocity generally decreases and 

the wave height increases. A shoaling wave finally breaks at the location where the water 

depth can not longer sustain the increase in wave height. The wave transformation may be 

further complicated by the presence o f coastal structures and rugged bathymetry which may 

induce wave diffraction, reflection, and forced breaking.

From breaker line or zone, the waves proceed into the surf zone, a region o f dynamic and 

complex fluid motions and o f great energy dissipation. Considerable sand movement can 

occur in the surf zone, resulting in potentially significant bathymetric changes. On a 

uniformly sloping beach, waves w ill continue to break. On a beach where the slope becomes 

milder after breaking, the fluid motions tend to recover the properties o f oscillatory waves 

(Horikawa 1989). In either case, wave breaking induces secondary motions in the surf zone, 

particularly turbulence and currents. These secondary motions in the surf zone, when 

energetic enough, may impact the incident waves in return.

Aside from the wave motion and turbulence, there also exist fluid motions at time scales 

longer than the wave period. Such fluid motions manifest themselves in the currents driven 

by either waves or tides or local winds. The nature o f these currents is dependent on the 

forcing and on the local topography. In the surf zone, wave-current interaction becomes 

significant, and mean water surface elevations vary appreciably.

Wave-driven currents are commonly observed as undertows, longshore currents and rip 

currents. Besides wave forcing such as "radiation stresses" (Longuet-Higgins and Stewart 

1964), the mass transport associated with wave motion (Sobey and Thieke 1989) and the

2
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shoreline constraint all contribute to the formation o f wave-driven currents. Though perhaps 

secondary in magnitude compared to the wave motion, the mean flow  currents are o f 

fundamental importance in net sediment and contaminant transport in the nearshore zone.

In summary, wave transformation in the nearshore zone governs the evolution o f 

coastlines and beach profiles. Thus wave field data in a coastal region are essential to coastal 

engineering practice. It is the objective o f this dissertation to develop a model fo r simulating 

wave transformation in coastal regions, in particular the evolution o f mean flow  circulation 

and wave-averaged parameters such as wave height and mean water surface elevations.

12  Methodology

As waves travel into shallow water, their dynamics becomes progressively more 

nonlinear and dissipative. The nonlinear behavior o f wave propagation, coupled with the 

wave-current and wave-turbulence interactions, makes the nearshore zone, particularly the 

surf zone, hydrodynamically so complicated that many physical phenomena in the nearshore 

zone are still not fu lly understood.

Among various ways to deal w ith waves which are naturally irregular, the simplest and 

most convenient method is to reduce them to representative long-crested monochromatic 

waves, which enable us to use the rich knowledge on periodic waves. W ithin this broad 

approach, models for simulating wave propagation may be characterized in terms o f model 

resolution, as phase-averaged models or as phase-resolving models (Battjes 1994). Phase- 

averaged models seek to represent the evolution o f the wave envelope and mean flow 

circulation. This type o f model has the advantage o f precluding small-scale fluctuation from 

consideration while still retaining the dominant physics in the nearshore zone. Phase-

3
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resolving models seek to resolve detailed wave profiles and have particular value in the zone 

near structures.

In the past decade or so, a number o f phase-averaging models have been developed, 

such as those by Svendsen (1984a, b, c), Stive and Wind (1986), De Vriend et al. (1987). 

While these models demonstrate the power o f the mean flow  approach, they are incomplete. 

The shortcomings o f these models are: (1) some (Sevendsen 1984a, b, c) exclude wave- 

current interaction, simulating wave setup and mean flow circulation from a decoupled wave 

height model, (2) some (De Vriend 1987) only deal with a bottom layer from the sea bed to 

the wave trough by simply neglecting the mass transfer across the wave trough and using 

empirical formula for the momentum transfer across the wave trough, (3) the transient 

behavior o f the wave field is rarely simulated. It is thus desirable to apply more rigorous 

flu id dynamic analysis to the description o f these phenomena. Recently, Sobey and Thieke 

(1989) have developed a depth-integrated and wave-averaged model based on the 

conservation o f mass, momentum and wave energy. This model is theoretically sound and 

consistently valid for the entire coastal region, including the surf zone. Comparisons 

between the model results w ith experimental data and field observation for steady wave 

fields showed this model very promising. In addition, this model can be extended to the 

transient behavior of the mean wave field and for two horizontal directions.

The background to the depth-integrated wave-averaged model follows an analysis 

technique used in turbulent shear flows, adapted to derive the governing equations for wave 

height, wave setup and currents. Variables are decomposed into a mean part and a 

fluctuating residual, as first applied to waves by Longuet-Higgins and Stewart (1964). 

Subsequently, the conservation equations for mass and momentum are averaged over wave

4
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groups, and integrated over water depth, giving a set o f mean flow mass, momentum and 

wave energy equations. The time-averaging introduces apparent stress- or Reynolds stress- 

style terms which introduce a closure problem. Fourier approximation wave theory is used 

to construct closure surfaces on which the dependent variables are related to water depth, 

wave period and wave height

This study w ill modify and extend the Sobey and Thieke's model to simulate transient 

wave propagation in horizontally extensive coastal regions.

The model was developed from an Eulerian perspective. There is an important 

distinction as wave averaging differs significantly between the Eulerian and the Lagrangian 

perspectives. The differences can best be examined by considering the fam iliar mass 

transport in wave propagation. Using linear wave theory, the Lagrangian wave-averaged 

velocity is uniformly distributed from the sea bed to mean water surface, while the Eulerian 

wave-averaged velocity is confined between the trough and the crest.

Given the nonlinear nature o f the mathematical model and the closure problem, it is 

d ifficu lt to solve the system analytically. The system o f wave-averaged equations is 

quasilinear hyperbolic. Numerical solutions are obtained based on the method o f 

characteristics (MOC), which is a well-proven numerical method for quasilinear hyperbolic 

problems.

As in any numerical simulation for a truncated computational domain, open boundary 

conditions are a key issue. Though there are analytical open boundary conditions for some 

linear systems, the specification o f open boundary conditions for a nonlinear system largely 

relies on empiricism. The dependence o f open boundary conditions on a problem at hand or 

even on a specific boundary makes the specification o f open boundary conditions an integral

5
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part o f any numerical schemes for boundary value problems. To specify physically justified 

open boundary conditions is one o f the major tasks o f this study.

13 Scope and Major Assumptions

As stated above, the interest o f this study centers on the evolution o f wave-averaged

parameters, such as wave height, wave setup and mean flow  circulation. The ultimate goal is

to develop a computational framework for simulating the evolution o f the wave-averaged 

parameters.

The physical processes to be represented in the model include shoaling, refraction, 

diffraction, wave breaking, and wave-current interaction. Though the wave-averaged 

evolution equations do not preclude wave reflection, the use o f a progressive steady wave 

theory for closure w ill make the present model inappropriate for modeling wave reflection.

Given the complex dynamics in the nearshore region, it is neither possible nor 

appropriate to tackle every physical aspect in a single dissertation. To make the problem 

tractable and to focus on the dominant physics o f wave propagation in coastal regions, the 

following assumptions are adopted for this study:

• The model is based on a two-layer concept. Recognizing that the mass transport

associated with wave propagation is confined between the wave trough and crest in an

Eulerian framework, it is appropriate to treat mean flow  currents below and above the 

wave trough separately. In this context, the layer between the trough and the crest is 

defined as a surface layer, and the layer between the sea bed and the trough as a bottom 

layer. The surface layer is assumed to be dominated by wave motion, and the wave- 

driven currents (not the wave kinematics) lie only within the bottom layer. Also the

6
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mean flow  currents below the trough are assumed to be uniform ly distributed.

• Stokes' first definition o f phase speed is used in the Fourier approximation wave theory 

for establishing closure surfaces.

• Turbulence is assumed secondary in significance to wave motion, even in the surf zone. 

Thus the turbulent Reynolds stresses are not considered in order to focus on the wave 

dynamics. The turbulence-associated terms are, however, fu lly  considered in the 

mathematical model.

• The sea bed is assumed to be slowly varying such that wave reflection is negligible and 

all dependent variables are slowly varying in space.

• Incident wave conditions are slowly varying in time, so that a ll wave-averaged dependent 

variables are also slowly varying in time.

1.4 Organization of This Dissertation

In Chapter 2, a depth-integrated, wave-averaged model is developed from the 

conservation equations o f mass, momentum and energy. Chapter 3 reviews the literature on 

the fluid motion in the nearshore zone, wave transformation modeling, method o f 

characteristics and open boundary conditions. Chapter 4 discusses closure variables and 

establishment of closure surfaces from the Fourier approximation wave theory. 

Subsequently, a set o f integral equations with closure variables are derived. In Chapter 5, the 

model is applied to simulating one-dimensional wave propagation. The procedure for 

deriving compatibility equations in a one dimensional space is introduced, the detailed steps 

being given in Appendix A. Also discussed is how to specify open boundary conditions. 

The model is then applied to four schematic problems and to shoal-normal wave propagation

7
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at Egmond Beach, The Netherlands.

Chapter 6 describes the application o f this model in two spatial dimensions. The 

procedure for deriving compatibility equations is briefly discussed, the complete procedure 

being given in Appendix B. Characteristics o f the system are analyzed under an assumed 

wave environment. Also presented in this chapter are the numerical scheme based on bi- 

characteristics and open boundary conditions. Finally, this model is applied for three 

schematic problems: evolution o f an in itia l water mound, normal and obliquely incident 

wave propagation, and for simulating wave focusing by a submerged shoal under the 

conditions o f Berkhoffs experiment (1982). In Chapter 7, a brief discussion is given on 

how to simulate wave reflection and coastal sediment transport with wave-averaged models. 

In Chapter 8, the main aspects o f this study are summarized, including the future research 

necessary to expand the capabilities o f this model.

8
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2. MATHEMATICAL FORMULATION

A rigorous approach to developing a predictive model for the hydrodynamics in the 

nearshore zone must be based on the conservation equations o f mass and momentum. To 

study the evolution o f wave-averaged parameters on the wave phase plane, a wave-averaged 

model is developed first by time averaging the conservation equations over wave groups. 

Subsequently, the time-averaged equations are integrated over depth to give a set o f wave- 

averaged and depth-integrated mean flow equations. A conservation equation for wave 

energy is derived by subtracting the mean flow mechanical energy equation from the time- 

averaged conservation equation o f general mechanical energy. The mean-flow continuity 

and momentum conservation equations coupled with the conservation equation o f the wave 

energy constitute a set o f governing equations for mean wave parameters.

2.1 Conservation Equations

The Cartesian coordinate system is located at the still water level (SWL) w ith z directed 

vertically upwards and x and y in the horizontal plane. When applied to a coastal region, 

the x-axis is conventionally directed onshore, and y-axis alongshore in accordance w ith a 

right-handed system as shown below.

* zShore

SWLWave advance

h(x.yLfr| ( x , y ,  t )
Sea bed

Figure 2-1 Definition Sketch of Coordinate System

9
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The Eulerian continuity equation for an incompressible flow  is

£ + £ + £ - 0  <21>dx ay dz

and the momentum conservation equations in x, y and z directions are

du d(u2) . d(uv) . d(uw) _ 1 dp 1 rdXxx . dtyx . dza ,

dt dx dy dz p d x  p dx dy dz

dv t d(uv) | d(v2) [ d(vw) 1 dp  ̂ 1 dxxy ( dtyy | _
dt dx dy dz p dy p dx dy dz

dw [ d(uw) [ d(vw) t d(w2) _ 1 dp 1 dtxz ( dtyz | d x a ,
dt dx dy dz p dz p dx dy dz

where u(x,y,z,t), v(x,y,z,t), and w(x,y,z,t) are the velocity components in x, y, and z

direction, p(x,y,z,t) is the pressure, T(x,y,z,t) are the viscous stress components, p is the

water density, and g is the gravitational acceleration.

The kinematic and dynamic boundary conditions at the water surface, q(x,y,t), are

dq dq dq 
w - —- - u —-  - v —- =  0

dr dx dy (2.5)

p (x ,y , t )  = 0

The kinematic bottom boundary condition at the sea bed is

u + v + w = 0 at z = -h (x ,y ) (2.6)
dx dy

where z=-h(x,y) describes the slowly varying bottom topography.

The conservation equation o f mechanical energy is

^  + ̂ - [  u • (— + E) ] + z j - [  v • (— + E) ] +  ̂ ~ [  w • (— + E) ] =
dt dx p dy p dz p

u d ( t „  +  X y x  +  T « )  V d ( T x y  +  T y y  +  T z y )  . W  d ( t x 2  +  T v z  +  T z z )
-gw  + ------------ r 2--------- + --------- ^ - r 22----- -  + ------------- T----------

p dx p dy p dz

10
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where

E = — (u2 + n̂  + w2) (2.8)
2

The mechanical energy conservation Equation (2.7) is established as the summation o f 

three momentum conservation Equations (2.2) through (2.4), each multiplied by respective 

velocity component. In its present form, it is not independent o f the momentum equations.

2.2 Wave-Averaged Conservation Equations

Time-averaging is a useful means for directing attention to the longer time scale 

variation. For instance, in turbulent shear flow, time-averaged flow  equations, or mean 

flow  equations, deal specifically with mean flow characteristics by introducing Reynolds 

stress. The time-averaging technique was in itia lly  utilized in wave studies by Longuet- 

Higgins and Stewart (1964). By using the same concept, Sobey and Thieke (1989) 

developed a set o f mean flow  equations for the evolution o f wave-averaged parameters. 

This study w ill follow the Sobey and Thieke's procedure in deriving conservation 

equations for mean mass and momentum, and wave energy.

In the nearshore zone, the dominant fluid motion is periodic wave motions. Since the 

mean flow variation at a time scale greater than the wave period is o f interest to this study, 

the wave period or several wave periods is an appropriate time scale which can truncate 

from the conservation equations all variations at time scales equal to or shorter than the 

wave period.

The turbulence in nearshore zone, especially in the surf zone, possesses a time scale 

generally shorter than the wave period. Hence the time-averaging over the wave period

11
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should remove the turbulent variations as well.

To time-average the conservation equations, each dependent variable (u, v, w, r\, p, and 

x) is represented as the sum o f a mean value and a fluctuating residual. For instance, the 

velocity component in  the x direction, u, is decomposed into:

u = u(x, y, z) + u(x, y, z, t) (2.9)

where u is the mean flow  velocity in x direction, u the fluctuating residual which includes 

both wave motion and turbulent motion. Several forms o f the mean value, u, were used in 

previous studies. Longuet-Higgins and Stewart (1964) and Phillips (1977) defined u as 

the vertically uniform Eulerian current; and M ei (1983) defined u as the mass transport 

velocity which differs from the Eulerian current by a vertically-uniform  wave-induced 

mass transport velocity. Common to these two definitions is that variation o f the mean 

velocity along water depth is not considered, thus u may be written in form o f u(x,y,t). 

By these definitions, the integration o f the conservation equations over depth prior to time- 

averaging excludes the vertical structure from consideration. However, the vertical 

structure o f the mean flow in the coastal region is a significant phenomenon, as 

demonstrated in various experimental studies (Nadaoka and Kondoh 1982, Stive and Wind 

1982). It is commonly observed that there is a reversal in the flow  direction o f wave-driven 

shore-normal currents over water depth. To account for, at least partially, the vertical 

structure o f mean flow  parameters, Sobey and Thieke (1989) adopted standard Reynolds 

averaging in which the mean value is represented as u(x,y,z,t). By time-averaging the 

conservation equations prior to depth integration, the information regarding the vertical 

profiles o f the Eulerian mean quantities is preserved. In this study, this approach is also

12
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used. Other dependent variables are decomposed in the same manner.

The Eulerian definition o f a wave-averaged variable, say u , is

_ 1 tl(z)
u = — J u(x, y, z, t)dt (2.10)

iiU)

where T is the wave period, ti and t2 are the lower and upper time lim its for integration. For 

a point located below the wave trough, t2-tt=T. But for the elevations above the wave 

trough, the interval between tj and t2 is shorter than the wave period since they are not 

constantly submerged. In this case, ti and t2 depend on the vertical position, represent 

respectively the starting and end times for the point to be submerged within a wave period.

In shallow water, wave profile is normally not symmetric about wave crest, thus L and t2 

are not symmetric about the wave crest.

Introducing such decompositions for u, v, and w into the continuity Equation (2.1), 

time-averaging in the manner o f Equation (2.10) and using the Leibniz rule gives the wave- 

averaged continuity equation:

3u 3v 9w 1 d t i  , .3 t i ,  n /011,
— + — — —[w(z,t2) - —  w (z,ti)— ] = 0 (2.11)
ox dy dz T  dz dz

The square-bracketed term exists only at elevations above the wave trough for asymmetric 

waves (Thieke 1988). The two components in the term cancel identically for symmetric 

wave profiles at elevations above the wave trough, and are both identically zero for 

symmetric and asymmetric waves below the trough.

Sim ilarly, introducing the decompositions for u, v, w, p and x. and time averaging the 

x-momentum conservation Equation (2.2) leads to:

13
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Again the square-bracketed term, appearing in form o f [q(z,t2)(dt2/dz)-q(z,ti)(dti/dz)]/T, is 

not triv ia l above the trough i f  the wave profile is asymmetric about the wave crest. As 

expected, there remain residual inertial terms involving the wave and turbulent fluctuations 

which are similar to the Reynolds stresses in turbulent shear flow. These terms account fo r 

the contribution o f both wave and turbulent fluctuations to the mean flow, momentum 

balance. The existence o f these terms presents a closure problem, which w ill be addressed 

in Chapter 4.

The wave-averaged y- and z-momentum equations read:

dv duv d y 2 dvw 1 d t2 . . . , d tu
— + - r — + -t—+ — -----—[v(z, t2)w(z, t2) - —  v(z, ti)w(z, ti) — ] =
dt dx dy dz T dz dz

—  -  _ —  —  (2-13)
1 g , .  A )

p dx dy dz T dz dz

dw duw dvw dw 2 l r ■>, ^ t 2 ■>, - . ^ t i ,  -—  + - r — + - V - + ~[w-(z, t2) — - w-(z, 11) — ] = -g 
dt dx dy dz T dz dz

—  —  -  _ —  (2-14)
. I rd ( t« -puw) . d(XyI-pvw) d(-p + ti* -pww l r_ , _ , d t 2 _

+ — L  - - - - - - - - - - + - - - - - - - - - - - - - - - - - - - +  r - - - - - - - - - - - - - - - - — I t a f z . t J ^ r — - T z z t z . t i ; — JJ
p dx dy dz T dz dz

The time-averaged y-momentum equation is very similar to Equation (2.12). But the mean

z-momentum equation includes the gravitational acceleration term, g . The g term is equal

to g below the trough, reducing gradually to zero from the trough to the crest.

The time-averaging o f energy equation is performed in the same manner. However, the

interest o f this study is the conservation o f wave energy instead o f general mechanical

14
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energy. The wave energy equation can be developed by subtracting the product o f mean 

velocity vector and the mean momentum equations from the time-averaged conservation 

equation o f mechanical energy. The conservation equation o f kinetic wave energy, kw

is

, 1   ^
k w  = —(u* + v ' + w ;

3kw  3 r Pu 1
—— + — + - ( u  + u  v ' + uw*)]  +

3t 3x p 2

3  r p  V 1 —T ZT—7,- 3  r p w  1 ZTZT ^ 3
— [—  + —(u* V +  V3 +  V w ') ]  + — [—  + - (u* W  + v‘ W  + w )] =
3y p 2 dz p 2

, -  — 1 ,zr=r- =r=- •=-=-. -  3 kw -  3 kw — 3 kw — 3u
- ( g  - g)w +  - ( u  f  x +  V f  +  w f  ) -  u——  V —  w — U - —  -

p y 3x 3y 3z

(2.15)

3x
(2.16)

—  3v 3un ;t=-,3w  3u, — 3 v  —  3w 3v —  3w 
uv(— + — )-u w (— + — ) - v- — - v w ( — +  — ) - w* — +  

dx 3y dx dz dy dy dz dz

1 pw (u2 w + V2 W  + w3) 3t: pw (u2 W  + V2 w + w3) dt,
T

_ p  2  J 3z
z,t: . P 2 3zZ.C.

where

f i  =

3ti j  

3x :
l,j = x,y,z (2.17)

The potential energy inherent in the free surface fluctuations is included in the time- 

averaged pressure terms pu / p and pv / p . Unlike the energy conservation Equation 

(2.7), this wave energy equation is mathematically independent o f the mean flow  

momentum equations. This is analogous to the situation in turbulent shear flow where the 

total mechanical energy equation is dependent on the momentum conservation equations, 

while the turbulent energy equation is independent of the mean flow  momentum equations.

Fox (1970) used a sim ilar set o f conservation equations for studying a forced turbulent

15
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plume in a stratified fluid. The independence o f the equations o f the system w ill be 

verified in Chapters 5 and 6 by the fact that the number o f distinctive eigen-values equals 

the number o f the equations.

23 Depth-Integrated and Wave-Averaged Equations

To focus on the evolution o f mean wave parameters on a horizontal plane, the wave- 

averaged equations are integrated over water depth. Applying the Leibniz rule, the time- 

averaged kinematic free surface boundary conditions and bottom boundary conditions, the 

wave-averaged mass, momentum, and wave energy equations are integrated from sea bed 

to the wave crest. The intermediate steps w ill not be presented, and only final results are 

described here. The resulted depth-integrated, mean-flow continuity equation is

where T) is the mean water surface elevation (or setup) from still water surface, and T|c is 

the wave crest elevation. The terms associated with the asymmetry o f the wave profile 

vanish upon depth integration (Thieke 1988). Equation (2.18) is identical to the long wave 

mass conservation equation, which are applicable to unsteady gradually-varied flow in 

open channels.

The depth-integrated and wave-averaged x- and y-momentum equations are

(2.18)

(2.19)

16
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3t u 3x . 9y l
-h _  <2.20)

.  ~ .3r i i  r a  n.c  . a  n.c .
-g(h + Tl)—  ̂+ - [ —  j  SXy d z  + —  J S y y d z - T b ]

ay p 5x -h ay -h

where Tbx and t by are the respective shear stress component in  x and y direction. s„, sxy, s^, 

and s>y are the apparent stresses associated w ith wave and turbulent motion:

Sxx = -Ap-Pu2 + Pci)2 Sxy = Syx = -pGv Syy = -Ap - pv2 + pcd2 (2.21)

where Ap is the gravitational term which exists only between the trough and the crest. 

Again the terms due to the asymmetry o f the wave profile vanish upon depth integration. 

The procedure for deriving these equations is similar to the derivation o f the long wave 

equations, see Thieke (1988) for the details. The key steps include (1) using the time- 

averaged surface kinematic boundary condition and bottom boundary condition to 

eliminate terms resulting from the Leibniz rule, (2) integrating the z-momentum 

conservation equation to provide a vertical distribution o f the pressure, which is 

subsequently substituted into x-and y- momentum equations.

The viscous stresses are assumed to be negligible compared to other terms and are not 

included in Equations (2.19) and (2.20), which are almost identical to the shallow water 

wave equations except the apparent stress terms. The depth-integrals o f the wave apparent 

stress terms (S^, Sxy and Syy ) are called "radiation stresses" by Longuet-Higgins and 

Stewart (1964). This terminology does not correctly reflect the dimension o f these terms 

because a "radiation stress" has the dimension o f the product o f a stress and a length.

The gravitational term in s«, sxy and syy are not trivial only between the trough and the 

crest. The gravitational term at elevations above the mean water surface is defined by

17
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J t r f z )

Ap = pg[— J (ri(t) - z)dt] for rf < z < r|c (2.22)
t t( z )

and between the wave trough and the mean water surface, it is defined by

1 tj(z) _
Ap = pg[— J ( r i ( t ) -z)dt -Ovz)]  for riu- < z < rf (2.23)

t.(Z )

in which r f is the mean water level. Below the wave trough, Ap identically equals zero.

The depth integration o f the wave energy Equation (2.16) can be sim ilarly proceeded.

For simplicity, the energy losses due to viscous stresses, expressed by ufx , vfy and wf^ ,

w ill be neglected since in the nearshore zone, the viscous stresses are generally negligible 

compared to the wave apparent stresses (Thieke 1988). W ith the neglect o f the viscous 

energy losses, the depth-integrated wave energy equation becomes

(S2 + v2 + w2)dz + g -rf ] + -$ -  J [ ^ + ^ ( u 3 + u v2 + u w2)]dz
2 d t i  3 x i  P 2

~ f [—  + | ( v u 2 + v3 + v w 2]dz = - ^ " J ^ ( u 2 + v: + w2)dz- fu 2|^ d z  (2.24) 
5 y Jh P 2 9 x Jh2 Jh 3x

> — . a v  a u  a  Te v  —  ^  nr ~ a v
- uv(— + — )dz-—  - ( u -  + V +w-)dz- v — dz-Dt-Db 
Jh 3x dy dy {2  Jh dy

where Dt is the energy dissipation rate per unit area o f sea surface due to bottom friction, 

and Dwb is the energy dissipation rate due to wave breaking. The terms o f the asymmetry 

o f the wave profile again vanish upon depth integration. The second and third terms on the 

left hand side represent the energy flux due to wave motion. On the right hand side, the 

first and fourth terms describe the transport o f wave kinetic energy by the mean flow; the 

second, third and fifth  terms represent the interaction between the mean flow  and residual 

fluctuating, which are usually referred as to production terms in the context o f the turbulent

18
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shear flow  (Tennekes and Lumley 1973).

The depth integration o f the energy Equation (2.24) can not be proceeded without 

simplification as many integrands contain the spatial derivatives o f mean velocity 

components. These spatial derivatives depend on mean flow  field which is to be sought. 

For convenience, these derivatives are assumed to be uniform along the water depth so that 

they can be taken out o f the integration sign. This simplification w ill not tilt the energy 

balance among various components because the magnitudes o f these terms associated with 

the spatial derivatives o f mean flow  currents are much smaller than other terms i f  the mean 

flow current is weak (Sobey and Thieke 1989). In this manner, Equation (2.24) can be 

rewritten as:

In one dimensional steady state wave propagation with the mean velocity u being 

neglected, the above equation further reduces to

This is the fam iliar energy flux equation for wave shoaling.

2.4 Bottom Shear Stresses And Energy Dissipation

In a combined wave-current field, instantaneous bottom friction is approximately

(2.26)
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proportional to the square o f resultant velocity near the seabed. The wave-averaged bottom 

shear stress can be obtained by time-averaging the instantaneous shear stress in the manner 

o f Equation (2.10). I f  mean flow current is relatively weaker in comparison with wave 

motion, the wave-averaged bottom shear stress in one spatial dimension may be 

approximated by (Thieke 1988)

T * = | p  f wUnnsUb (2.27)

in which t b is the wave-averaged bottom shear stress, U ^  is the root mean square o f wave 

velocity near the seabed, Ub is the mean flow velocity near the seabed, and fw is a friction 

coefficient which can be evaluated from the data o f (Jonsson 1966). The Urms is used here 

to preserve the effects o f wave nonlinearity. In a two-dimensional space, the x and y shear 

stress components can be approximated, respectively, as

Xbx= j P f wUrms-ub (2.28)

Tby= “  P fw Urms ’ (2-29)

where ub and vb are the x- and y-component o f mean flow velocity at the seabed. O f course, 

the above formula are a very simplified expression about bottom shear stresses in a 

coexistent wave-current field. Longuet-Higgins (1970) obtained a similar form by assuming 

that the incident wave angle is small and that the longshore current is weak compared with 

the wave orbital velocity.

Energy dissipation during wave propagation in the nearshore zone, in particular in the 

surf zone, is a very complicated process. Energy may be dissipated through many ways 

such as white capping, spilling, plunging, surging, bed friction. In general, the energy loss
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due to viscous stress is relatively small and can be neglected. Energy dissipation is one o f 

the least understood facets in surf zone hydrodynamics. Empirical formula are used for 

estimating the rate o f wave energy dissipation. In this study, energy dissipation is 

accounted for by the energy dissipation due to bottom friction and the energy dissipation 

due to wave breaking.

Jonsson(1966) established a Darcy-Weisbach-type formula for wave energy dissipation 

due to bottom friction by assuming that the transfer o f energy dissipation to heat occurs 

rapidly and therefore that the dissipated energy can be equated to the dissipation o f wave 

energy without a need to budget the turbulent energy, i.e.

where the friction factor fw is identical to that in the formula for the bottom shear stress.

The energy dissipation due to wave breaking is significant in the surf zone. 

Unfortunately it can not be predicted with certainty. A pragmatic approach, based on 

dimensional analysis, has been adopted. Choosing the local energy density as the 

magnitude scale and the frequency as the time scale leads to a predictive equation for the 

breaking wave dissipation per unit width o f the form (Sobey 1989)

where the constant o f proportionality f„* is the wave breaking dissipation coefficient, which 

would be dependent on dimensionless groups including the water depth and the current and 

perhaps also on bottom slope. By assuming that the process of wave breaking is 

hydrodynamically similar to the tidal bore (Le Mehaute 1962, Battjes et al 1978). the 

proportionality constant can be estimated as

(2.30)

D k = f  k o) Ewb wb (2.31)
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where Hb is the local breaking wave height, and is the root mean square o f incident 

wave height. This estimator has been successfully used in a range o f field and laboratory 

conditions (Battjes and Stive 1985).

22
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3 LITERATURE REVIEW

This chapter briefly reviews flu id  motions in the nearshore zone, wave-transformation 

modeling, and related computational aspects such as numerical methods and open 

boundary conditions.

3.1 Fluid Motions In The Nearshore Zone

Fluid motions in a nearshore zone can be broken up into long-period motion, wave 

motion and turbulence. The long-period motion, according to Shepard and Inman (1950), 

can be divided into two families: coastal currents and nearshore currents. Coastal 

currents (ocean currents, tidal currents and wind-induced currents) are not directly 

associated w ith the waves in the shallow water, and are mostly directed parallel to the 

shoreline. Nearshore currents (longshore currents, cross-shore currents and rip currents) 

are induced by the action o f waves.

Munk (1948) and Tucker (1950) are among the earliest to quantitatively demonstrate 

the existence o f a long-period water surface fluctuation in the nearshore zone w ith a time 

scale between some tens o f seconds and a few minutes, naming this phenomenon "surf 

beat". Recently, new measurement techniques have detected wave-induced long-period 

variation in a frequency band from 0.002 Hz to 0.02 Hz in the deep ocean (F illoux and 

Luther 1991). The nearshore currents may be small in amplitude, but their interaction 

w ith the incident short waves may be quite significant in the nearshore zone. The long- 

period motions cause the wave energy to modulate in space and time and force energy 

exchange between waves and mean flow (Hammet al. 1993).

The long-period variations are normally caused by the spatial gradients o f wave
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apparent stresses. Far seaward o f the breaker zone, the gradients o f the apparent stress 

are small and the mean flow  is weak. Approaching and w ithin the surf zone, as energy 

dissipation increases, the gradients o f wave and turbulent apparent stresses increase and 

the mean flow  may be strong. Mean flow velocities o f order o f 1 m/s are not uncommon 

(Greenwood et al. 1990).

Energy dissipation in the surf zone is dominated by wave breaking, with bottom 

friction accounting for no more than 10% o f the energy dissipation (Sawaigi and Iwata 

1974). A  large amount o f the potential energy lost in the breaking is firs t converted into a 

turbulent kinetic energy o f organized large vortices and contributes to the formation o f a 

horizontal roller (Svendsen 1984). The energy contributing to the formation o f the 

surface roller is the energy transfer from the wave motions to the mean flow. Longuet- 

Higgins (1967) described the surface roller as a gravity current riding down the forward 

slope o f the wave, retaining its identity because the trapping o f air bubbles for spilling 

breakers makes it lighter than the water below. Presence o f the surface roller to some 

extent increases wave energy flux and apparent stress.

Shoreward o f the breaker line and for moderate slopes (spilling breakers), the surf 

zone may be divided (Svendsen et al. 1978) into three sub-zones: an inner breaking 

region, a transition zone and an outer breaking region. In the inner breaking region or 

transition zone, breaking waves are transformed into turbulent bores with rapid 

transitions o f the wave shape. In the outer breaking region, waves become very sim ilar to 

a moving bore and seem to be strongly controlled by local water depth and bed slope. 

Svendsen (1987) suggested that most turbulent energy be dissipated close to where it is 

produced.
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Though the turbulence is an important feature in the surf zone, periodic motion is s till 

the dominant flu id  motion (Battjes et al. 1990). Sobey and Thieke (1990) showed that the 

wave-induced apparent stresses are an order o f magnitude greater than the turbulent 

apparent stress by analyzing the data o f Nadaoka and Kondoh (1982). During wave 

breaking, the flu id motions below the aerated surface remain periodic (O'Brien 1931). In 

the measurement o f turbulence fie ld for breaking waves, Longuet-Higgins(1967) 

observed that the highest level o f turbulence begins on the forward face o f the wave just 

below the mean water level. Peregrine and Svendsen (1987) also noticed that the 

turbulent intensity above the trough is much higher than that below the trough.

The nearshore currents are rarely steady. Oltman-Shay et al. (1989) reported 

oscillations in the longshore current measured on a beach. The unsteadiness and 

irregularity o f the mean flow further complicates the interaction among the mean flow, 

wave motions and turbulence.

Wave-induced currents exhibit a strong vertical structure in the nearshore zone, as 

illustrated, for example, in laboratory by Stive and Wind (1986) and in field by Nadaoka 

and Kondoh (1982) and Greenwood and Osbome(1990). From Eulerian perspective, 

there is typically a reversal in the vertical profile o f the shoal-normal velocity, with the 

flow  in the upper layer directing toward shore and the flow in the lower elevations 

directing seaward. Skjelberia (1987) observed mass transfer between the upper layer and 

lower layer. He measured a vertical mass flux across the trough level in the breaking 

solitary waves, and noticed a strong velocity gradient near the trough. Thieke and Sobey 

(1990) showed that a vertical mass flux across the layers is an essential part o f the mass 

and momentum balances in the nearshore zone.
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The wide swash zone where sheet flow  prevails is also important fo r generating the 

offshore propagating low frequency waves (Hamm et al. 1993).

3.2 Wave Transformation Modeling

Wave transformation models can be generally grouped into two families: phase- 

resolving models and phase-averaging models (Battjes 1994). The phase-resolving 

models seek to follow  the instantaneous local motion as it evolves in space and time 

w ithin wave cycles, computational space and time scales must be o f order L/15 and T/15 

(L: wave length, T: wave period) respectively to resolve the phase response. Battjes 

(1994) suggested that the phase-resolving models be necessary only near structures. 

Boussinesq models (e.g. Peregrine 1967) and the mild-slope equation (Berkhoff 1972) 

fa ll into this category.

The phase-averaging models focus attention on the slow variation o f integral 

properties o f the local wave field (wave height, setup, undertow, ...) and can operate at 

much larger space and time scales. Wave-averaged cross-shore models (Battjes and 

Janssen 1978, Svendsen 1984a and 1984b, Sobey and Thieke 1989) are some examples 

o f this type o f model.

In the fo llow ing review, emphasis centers on phase-averaged models. For a detailed 

review o f phase-resolving models, see Hamm et al. (1993) and Battjes (1994).

Phase-averaged models are normally derived by viewing the horizontal plane as 

phase space and the vertical coordinate as cross-space, containing the modal structure. 

The modal structure is determined first, independent o f the horizontal variations, and 

expressed analytically to permit depth integration. Subsequently the depth-integrated
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equations are averaged over a wave period, to establish the transport equations describing 

the horizontal propagation on the phase plane. This procedure has been followed by 

Phillips (1977), Mei (1983) and Yoo et al. (1986). The sequence o f depth integration and 

time averaging may be exchanged. Also the time-averaging can be performed by using 

either an ensemble average (Svendsen 1983) or a phase average (Mei 1983, Thieke

1988).

The integral equations so derived in a two dimensional space are not a closed system. 

Wave direction must be determined since the wave apparent stresses depend on the wave 

direction. The most popular way to determine the wave direction is based on the 

irrotationality o f a wave number vector.

To provide reasonable results, a phase-averaging model must be able to simulate the 

follow ing aspects:

• Vertical structure o f mean flow  currents.

• Nonlinearities.

•  Energy dissipation.

•  Wave-current interaction.

• Mass and momentum transport due to wave breaking.

Models based on integration over the entire depth (Phillips 1976, Mei 1983) can not 

accommodate the vertical structure o f the mean flow. To consider the vertical structure 

o f mean flow, depth integration may be performed over several sub-layers each w ith an 

individual structure (Svendsen 1984, Tshchiya et al. 1988, Sobey and Thieke 1989, 

Battjes et al. 1990). In this manner, the vertical structure may be approximately 

preserved and the mass transport above the trough due to wave motion considered.
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As waves propagate toward the shore, nonlinearity grows and becomes increasingly 

significant. Nonlinear wave theory should be preferred over linear wave theory. Sobey 

and Bando (1991) indicated that the choice o f a suitable wave theory to compute wave 

celerity and wave action is an essential task in shoaling computations. Linear wave 

theory can provide reliable prediction for small wave steepness i f  a depth to wave length 

ratio is less than 0.1, but fails otherwise (Svendsen and Hansen 1977). Thieke (1988) 

compared the momentum and energy fluxes computed from linear wave theory and from 

Fourier approximation wave theory. He found that in shallow water the difference 

between the results from the two wave theories is substantial. The price for using a high- 

order or nonlinear wave theory is the increasing complexity.

Some wave theories depend on the choice o f the definition o f wave celerity. Stokes' 

first definition o f wave celerity assumes that the Eulerian mean horizontal flu id  velocity 

at any point is equal to zero. Stoke’s second definition assumes that the mass flux over 

entire water depth is zero. Which definition should be used depends on the problem at 

hand. For example, in cross-shore steady state wave modeling the second definition 

should be used because it is more consistent w ith the physical process being simulated 

(Thieke 1988). But i f  the transient behavior is a major concern, it  is hard to argue which 

definition is better. Ease o f use becomes a dictating factor.

As discussed in the preceding section, energy dissipation is important fo r the mean 

flow circulation since it dramatically increases the gradient o f wave apparent stresses. 

There are numerous estimators for the energy dissipation rate due to wave breaking 

though none with enduring credibility. Le Mehaute (1962) developed an estimator for 

the energy dissipation rate based on the resemblance between surf zone waves and bores.
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But application o f the bore model to the barred profiles or very gentle slopes is 

problematic since wave breaking ceases after a while (Hamm et al. 1993). A  more 

popular approach is based on parameterization (Battjes and Janssen 1978, Thornton and 

Guza 1986, Battjes and Stive 1985, Sobey 1989), with a calibrated loss coefficient. 

According to Battjes (1994), the energy dissipation rate can be realistically predicted with 

typical relative errors o f less than 10%. Energy dissipation is a continuous process, 

which starts w ith surface instability and reaches maximum during wave breaking. The 

concept o f a fraction o f breaking waves (Battjes and Janssen 1978) is useful in the 

respect. In the surf zone, the energy dissipation due to bottom friction is much less 

significant. A  pragmatic model is Jonsson (1966).

The present understanding on mass and momentum transport due to wave breaking 

remains very lim ited. Svendsen (1984) derived expressions o f energy flux and radiation 

stress in the inner zone by including the effect o f the wave shape and o f the surface roller 

considered as a volume o f water carried shorewards w ith the breaker. But these 

expressions rely on many empirical parameters which are s till not well verified.

The phase-averaging models, because o f using a wave theory for the closure o f the 

wave-related terms in the time-averaged equations, have d ifficu lty  dealing w ith partial 

wave reflection. A t present, their application must be restricted to weakly reflecting 

beaches.

33 Open Boundary Conditions (OBC)

In the numerical simulation o f wave propagation in coastal regions, the physical 

domain must be truncated to seaward. The truncated solution domain has open
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boundaries across which information should be allowed to transmit freely. There should 

be no numerical reflection at the open boundaries.

The importance o f OBC can not be overstated. I f  an OBC is not properly specified, 

the interior numerical solutions w ill be contaminated, in a potentially unrecognizable 

manner. Numerical instability may even be induced. In addition, the inability to specify 

correct in itia l conditions further signifies the importance o f OBC. The artific ia l 

disturbance-the discrepancy between the imposed in itia l conditions and true in itia l 

conditions-would be reflected back and forth from the open boundaries i f  they are not 

"transparent" (Bode and Sobey 1984). For a dissipative system, this disturbance w ill be 

attenuated and eventually disappears, w ith a "calm-down" period depending on the 

degree o f dissipation in the system. For a non-dissipative system, the disturbance persists 

forever.

Unfortunately, absolutely non-reflecting boundary conditions are available only for 

some very simple cases, e.g. fo r one-dimensional, linear wave problems (Verboom et al. 

1982). For non-linear systems, only weakly reflecting boundary conditions can be 

achieved.

The most commonly used OBCs in the literature are listed in Table 3-1. In the table, 

q represents a dependent variable o f interest, C is a wave speed, t is the time, x and y 

respectively denote an outward normal vector and a tangential vector which form a local 

coordinate system.

In the sponge-layer method, an artificial damping is imposed w ithin a sponge layer to 

gradually attenuate outgoing information. The computational domain for this method 

must be extended such that the area o f interest is not affected by the sponge layer.
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The Sommerfeld radiation condition (SRC) is another popular OBC which is derived 

from one dimensional harmonic wave equation. There are many variations in SRC 

depending on definition o f the wave speed C adopted. CLP and GRD are the special 

forms o f SRC with C=0 and C=°° respectively. SPO is a combination o f the sponge-layer 

method and the Sommerfeld OBC (Israeli and Orszag 1981). HOC (Hedstrom 1979) was 

in itia lly  derived for a one-dimensional nonlinear homogeneous hyperbolic system. 

Theoretically it has not been successful in extending the HOC to non-linear hyperbolic 

systems in two spatial dimensions.

Table 3.1 Summary of Open Boundary Conditions

OBC TYPE ABBR. REFERENCE
Sponge layer various
Clamped, q=0 CLP various

dq
Zero gradient, —L = 0 

dx

GRD various

Sommerfeld radiation conditions — + C ^ -  = 0
dt 3.r

SRC various

Mixed sponge layer / free wave propagation SPO Israeli and 
Orszag (1981)

n  D ,. . dq d 2q fd q ']2 
Oblique Radiation, - ■ +  C

dt dxdy \d x  J ^ay

ORC Raymond and 
Huo (1984)

Invariant along an incoming characteristics

i  —  = o , i : left eigenvector corresponding to 
9t

incoming characteristics.

HOC Hedstrom (1979)

Highly absorbing local boundary conditions

[  d a d i d 2 d2 )

[d x  dy1 Jq

T — , z r ) is a pseudo-differential operator: 
[ d y  dt )

Engquist and 
Majda (1976)
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The Engquist and Majda OBC in the form presented in Table 3.1 was derived fo r a 

scalar wave equation. But open boundary conditions for first order linear symmetric 

systems can be developed by using a sim ilar approach.

Harper and Sobey (1983), Bode and Sobey(1984), Chapman (1985), Raed and 

Cooper (1986), among others, have evaluated performance o f some OBCs listed in Table 

3.1. R0 ed and Cooper (1986) evaluated CLP, GRD, SRC, ORC, SPO and HOC by using 

a barotropic, linear model in a rectangular grid under three different forcing conditions: 

uniform alongshore wind, bell-shaped wind, and moving storms, representing strong, 

weak and moving forcing at the open boundaries, respectively. They found that HOC is 

the only OBC which provides a reasonable response in all cases studied, and suggested 

that CLP and SRC be avoided in most applications. They also pointed out that the choice 

o f OBC is problem dependent.

Besides the OBCs discussed above, there are many OBCs developed for specific 

problems. For instance, Harper and Sobey (1983) developed an OBC for storm surge 

modeling, Verboom et al. (1984) designed an OBC for a system consisting o f two 

nonlinear equations with the form o f solutions known. Based on the mass conservation at 

a computational cell, Larsen et al. (1983) also developed an OBC for short wave 

simulations in terms o f the characteristics o f incoming waves. But careful examination o f 

the OBC o f Larsen et al. shows that it is just a discretized form o f the Sommerfeld OBC 

w ith a wave speed equal to twice the phase speed.

When studying linearized Navier-Stokes equations. Rudy et al.( 1980) extended HOC 

by adding a spring-effect term to enhance numerical stability and accelerate the 

convergence o f numerical solutions to steady state solutions. This additional term
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prevents the numerical solutions from overshooting or undershooting.

There are no analytical non-reflecting boundary conditions for nonlinear systems in a 

two or three dimensional space. Some o f the OBCs listed in the Table 3-1 may be 

extended for nonlinear systems, but there are no guarantees for weak reflections and 

numerical stability. The specification o f the OBC fo r nonlinear systems s till relies on 

numerical experiment. In this study, HOC w ill be used since it has been well proven and 

is relatively easy to be implemented.

3.4 Numerical Schemes

The integral conservation equations for wave-averaged parameters given in Chapter 2 

form a nonlinear and hyperbolic (See Section 5.2 and Section 6.2) system. This system w ill 

be solved numerically. This section offers a brie f review on numerical methods, aiming 

to provide a general guideline for selecting an appropriate method for this system.

The most common numerical methods include fin ite  difference method (FDM), fin ite  

element method (FEM) and method o f characteristics (MOC). Since the information in a 

hyperbolic system propagates at fin ite speed, FEM and im plicit FDM are physically not 

appropriate for simulating a hyperbolic system because these methods imply an in fin ite  

propagation speed (Potters 1973). Either explicit FDM or MOC can be used for the 

present model.

FDM is easy to implement numerically, but numerical diffusion can be a significant 

problem. This is a big concern for simulating wave propagation. To minimize the 

numerical diffusion, many high-resolution FDM schemes for conservative systems have 

been developed by using the equations in conservative form; examples are flux-corrected
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transport scheme (Book et al. 1974) and total variation diminishing scheme (Yee and 

Wanning 1985). In this manner, the difference equations remain physically consistent 

with the conservation laws on which the PDE's are based. For this approach, the focus is 

on the calculation o f flux terms. I f  a dependent variable is specified fo r a computational 

cell instead o f at grid points, this approach is called a fin ite  volume method (FVM ). In 

this approach, the general boundary condition problem is relegated to the evaluation o f 

the flux across a boundary, which in some cases is easier and thus more favorable.

In MOC, attention is directed to a set o f compatibility equations derived by linearly 

combining the original differential equations weighted by the components o f an eigen

vector o f the system. Each compatibility equation describes the information propagating 

at a single speed. The strength o f MOC lies in its ability o f tracing the information 

propagation. This feature is especially useful for solving a system with multiple 

propagation speeds. One significant feature o f the compatibility equations is that they are 

in a solution space o f one fewer dimension than the original equations. For example, i f  a 

system is defined in x-t space, then the compatibility equations can be defined in a one

dimensional subspace, and the com patibility equations can be written as ordinary 

differential equations. In two- or three-dimensional physical space, the com patibility 

equations are s till partial differential equations, yet they are defined in a space o f one 

fewer dimension. This reduction in the dimensions o f the solution space should sim plify 

numerical simulation significantly, especially for problems in a one-dimensional space. 

In addition, MOC is capable o f dealing w ith discontinuity problems. The disadvantage o f 

MOC is that in general the compatibility equations in a two or three-dimensional space 

are formulated in non-conservative forms, thus the corresponding difference equations do
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not possess the preservative feature o f the original differential system.

Every numerical method has its own advantages and disadvantages. In selecting a 

numerical method, besides its suitability fo r the interior domain, consideration should 

also be given to forming open boundary conditions. The Hedstrom OBC, to be used in 

this study, is essentially based on MOC. Moreover, all high-resolution schemes o f FDM 

are generally based on MOC, for instance, the very popular Osher et al. (1982) scheme. 

This means that, even i f  using FDM the knowledge o f the characteristics o f a system is 

s till required in order to utilize high-resolution schemes. A ll factors considered, MOC is 

most suitable for the model studied here.

MOC has been used extensively in hydrodynamics simulation, i.e., in modeling o f 

tidal propagation by Daubert et al. (1967) and Townson (1974), and o f flood wave 

propagation by Katopodes and S trelkoff (1979). Surprisingly, MOC has not been used 

for simulating mean flow circulation by coastal engineers.

In a one-dimensional space, the number o f characteristics is lim ited and the 

com patibility equations are ordinary differential equations. Numerical solutions can be 

easily obtained by integrating the compatibility equations along the characteristics or 

characteristic curves. In contrast, MOC is not as convenient in two or three spatial 

dimensions because the compatibility equations are s till partial differential equations. 

The MOC approach to two-dimensional problems is totally different from that to a one

dimensional problem.

The key to applying MOC in two spatial dimensions is how to take advantage o f the 

infin ite  sets o f compatibility equations. The most popular numerical scheme is based on 

the integration o f compatibility equations along several bi-characteristics which are
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defined as the curve o f tangency between a characteristic surface with a characteristic 

conoid which inscribes the characteristic surfaces. This scheme is generally termed as the 

bi-characteristics method. Since the com patibility equations are s till partial differential 

equations, the integration along the bi-characteristics does not eliminate the 

differentiation along the other direction, so-called cross derivatives (Katopodes et al. 

1979). The stability and accuracy o f this numerical scheme depends very much on how 

to evaluate these cross-derivatives.

For a hyperbolic system w ith a Jacobian coefficient matrix which could factorize into 

a quadratic element and a repeated linear element, Bulter (1960) developed a second- 

order bi-characteristics method, using a continuity equation and compatibility equations 

along four bi-characteristics. Through algebraic manipulation o f these five difference 

equations, the terms associated w ith the cross-derivatives were all eliminated. In this 

manner, MOC becomes completely an integration problem. The solutions at a grid point 

can be obtained by integrating the com patibility equations along the bi-characteristics 

which originate from some in itia l points corresponding to the previous time step. The 

value o f a variable at the starting end o f the bi-characteristics segment may be obtained 

through interpolation from the values at the surrounding grid nodes.
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4 APPARENT STRESS CLOSURE

The depth-integrated wave-averaged equations for mass, momentum and wave energy 

derived in Chapter 2 contain mean and fluctuating parts o f velocity and pressure and other 

unknowns. The number o f the unknowns far exceeds the number o f the governing equations 

available. This is the apparent stress closure problem fam iliar in turbulence. To close the 

system, a set o f closure relationships must be introduced. The number o f the closure 

relationships should be equal to the number o f the unknowns minus the number o f equations.

Which variables to be closed and how to close them depend on the purpose o f a study. 

Since the objective o f this study is to simulate evolution o f mean wave parameters, wave 

height, wave setup and wave-induced mean flow velocity w ill serve as principal variables, 

and all other variables should be related to these variables. For instance, in a two- 

dimensional space, four governing equations allow solving four unknowns, i.e., wave height, 

wave setup and mean flow velocity components below the wave trough in x and y directions.

A ll the variables to be closed are involved in some terms which physically represent the 

fluxes o f mass, momentum and energy. Naturally, there are two ways to close this system. 

One is to close the individual variables and then to compute the flux terms; the other is to 

close the flux terms, like the Reynolds stress closure in turbulence. Since the present system 

is comprised by the depth-integrated, wave-averaged equations, closure o f individual 

variables would require tremendous computational work fo r evaluating the flux terms during 

simulation. Thus closure o f a flux term as a whole is a better choice here, though this closure 

method may introduce more closure variables than the closure o f individual variables.

The fluctuating components of velocity and pressure include both wave motion and 

turbulence. It is necessary to further decompose the fluctuating component into a turbulence
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part and a wave part, as closure hypotheses for the wave motion and turbulence are quite 

different. The turbulence closure problem has been studied extensively, popular reviews 

being Bradshaw (1972) and Tennekes and Lumley (1973). The horizontal velocity 

fluctuation, for example, is further decomposed as

u = uw + u ' (4.1)

where uw represents the wave fluctuation and u' the turbulent fluctuation.

This further decomposition does not change the integral continuity Equation (2.18), but it 

w ill result in extra terms in the momentum conservation equations and the .wave energy 

equation. In general, the turbulence frequency is much higher than the wave frequency, little  

correlation is expected between them and none is assumed here. The apparent stress s** in 

Equation (2.21), for instance, can be written as

s xx =  s xx.w +  s xx =  -Apw  -  PUw + pWw -  Ap' -  pu ' 2  + pw ' 2  (4.2)

For terms o f third or higher power, such as the energy flux terms in Equation (2.24), this 

decomposition w ill not just cause the split o f a term into a wave part and a turbulence part, 

but also include an interaction term between them, typically the transport o f turbulent energy 

by wave motion. As reviewed in Chapter 3, the predominant fluid motion in the nearshore 

region is wave motion, even after wave breaking. To focus on wave dynamics, in this study 

the mass, momentum and energy fluxes due to turbulence and the interaction between wave 

motion and turbulence are all neglected. The turbulence is considered only in evaluating 

energy dissipation during wave breaking.

In the Eulerian framework, the vertical distribution o f the wave-averaged quantity 

between the wave trough and crest is quite different from that below the wave trough
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because the elevation between the trough and the crest is submerged only part o f the time. 

For example, i f  the velocity between the wave trough and crest is derived through the first 

order Taylor series expansion based on the velocity at the mean water level from the small- 

amplitude wave theory, the wave-averaged horizontal velocity is formulated as

™  = /0 r  (4'3)

where H is the wave height, co the wave angular frequency, k the wave number, h the still 

water depth, the wave trough elevation, and r|c the wave crest elevation. The wave- 

averaged velocity below the trough is identically zero. The vertical distribution o f the mean 

velocity is sketched in Figure 4.1, with a maximum value at the mean water level.

surface
layer

bottom h 
layer

Figure 4.1 Sketch o f vertical structure o f wave-averaged velocity 

To recognize the fact that the wave-averaged variables have different characteristics in 

the regions below and above the wave trough, these two regions w ill be treated individually.

For convenience, in the following discussions the region between the trough and the crest 

w ill be referred to as a surface layer, and the region between the seabed and the trough as a 

bottom layer. It is further assumed that the water surface kinematics is dominated by wave 

motion and that the mean velocity in the bottom layer is uniform over the depth. Following 

this two-layer concept, the depth integration is performed over the surface layer and the 

bottom layer separately. In this manner, the integral continuity Equation (2.18) is written as
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| l + i . )-u d z + L jp & + i .  p * 3  j ^ z = 0  (44)
dt dx J. dy dx • By '

■h j  - h  j  T ),

where r j is the mean water surface elevation from s till water level or wave setup. 

Similarly, the integral x- and y-momentum Equations (2.19) and (2.20) are rewritten as

7) 1 »r_ 1c _ 3  ,'fr 1  d t',r__ ^ __
— ( j  udz+ \  udz)+ — ( j  u2 dz+  \  u2 dz) + — ( \  uvdz+  J uvdz) =  
dt -h n dx -h « dy .* n

  / 3 ,1(r ’'c 3 I*,r Tc
" ' t -  +—[^“ ( I Sxxdz+ I •yxx^) + T ' ( i

dx p dx -h nlr dy *  n„

(4.5)

- g ( h + r \ ) ^ -  + T [—  ( I  s x x dz +  \ s x x d z )  + — ( j  s x y d z +  J S x y d z ) - x bx]

- -̂( { vdz+ J vdz) + -^~ (J uvdz+ j  uvdz)+-— ( \ v 2dz+  f v2 dz) =
3 nir_ nc _ 3 11 *_ nc__  3

dt -h dx .h dy -kn- V '  n,
  J 0 *l(r n, 0  ^

-g (h +  r \)— +  —  [ ^ - ( U x y * +  I  S x x d z )  +  — ( U y y d z +  j  s x y d z ) - z b y ]

(4.6)

And the wave energy Equation (2.24) takes the form

^ - [  f  (u 2 + v 2 + w 2)dz + f  (u 2 + v 2 + w!)dz+ g(rj! +  f j2)] +•
2 31 I

%         1 c    _  ______________  _________

^ -{J [P d  u/p + (u 3 + U V2 + U w 2)/2]dz + J [Pd u/p + (u 3 + u v 2 + u w 2)/2]dz} ■
-h %

T ~(J tPd v/P + (u 2 v + v3 + v w 2) /2 ]dz + J [p d v/p  + (u 2 v + v3 + v w 2) /2 ]dz} = 
^ -h n*

3 I ' U ( U -  +  V2  +  W 2 ) r 1" , 3 q ; , (v 2 + W2)^J T 3 u b U b  3 r ' f  / — I  . ^ 3  .—  j   ------- d z - t /C  — + )dz] _ - T _ [ j (lI + v + w)dz]
T\a *h -h

J u2d z ]- ( f -  + f ^ ) (  f  uv dz + f u v d z ) - - ^ - f  “ (u2 +  v 2 + w2)dz 
3x J_ 3x 3y {  I  3 y ( 2

dV b nf  ,u 2 + w 2 3 — vb d rnf/.“  ~  i ^  ^— (— -—  + —v')dz (u* + v" + w“)dz]- —— v'dz-Dt-Db
dy Jh 2  2  2  dy i  ay i

The mean velocity and flux terms in the surface layer w ill be treated as closure variables.

(4.7)
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The wave height does not explicitly appear in Equations (4.4) through (4.7); it is only 

implicated as the range o f depth integration over the surface layer, i.e., H=^VTV Since the 

wave height is one o f most informative parameters describing mean wave field, it  is desirable 

to express the wave height explicitly in the governing equations. This can be achieved by 

introducing a scale parameter when evaluating a flux term in the surface layer. For example, 

the mass flux in the surface layer can be expressed by

1 c _

J u(z; x, y, t)dz = oq U SH (4.8)
'W

where Us is the scale parameter o f u (z ;x ,y ,t)in  the surface layer, and oq is a shape factor. 

The shape factor depends on the vertical structure o f u (z ;x ,y ,t) in a layer and on the choice 

o f the scale parameters. This approach is also applied to the evaluation o f flux terms in the 

bottom layer. Thieke and Sobey (1990) chose the value at the mean water level as the scale 

parameter for the surface layer, and the value at the mid-depth as the scale parameter for the 

bottom layer, and established a set o f shape factors corresponding to these scale parameters. 

Physically, it does not matter how the scale parameters are chosen as long as the shape 

factors are consistently determined. Thus scale parameters should be so chosen that the 

algebraic manipulation is simplest. I f  the mean values in a layer are chosen as the scale 

parameters, all the corresponding shape factors are identically equal to unity. In addition, 

this choice does not have to assume that the vertical profile o f a closure variable is self

similar (Thieke 988), which is indispensable i f  the scale parameter is represented by the 

value at any particular elevation. In this study, the mean values o f each layer w ill be used as 

the scale parameters.
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4.1 Layer-Averaged Scale Parameters In Closure Solution

The closure process is focused along the local wave propagation direction, w ith vector

wave propagation in a one dimensional space. For a two-dimensional space, the closure 

solutions can be transformed into solutions for the desirable closure variables, the exact 

transformation being discussed in Section 4.5. In the direction o f wave propagation, the 

layer-arranged scale parameters must be established for

( 1 ) u s > the layer-averaged mean-flow velocity in the surface ("s") layer in the mass and 

momentum conservation equations.

(2 ) Us > the layer-averaged mean-flow momentum flux in the surface layer in the momentum 

conservation equations.

(3) Ss and Sb. the layer-averaged apparent stresses in the surface ("s") and bottom ("b") 

layers in the momentum conservation equations.

(4) Fs and Fb, the layer-averaged energy fluxes in the surface ("s") and bottom ("b") layers in 

the wave energy equation.

quantities being resolved into this direction. Such closure solutions can be directly used for

(4.9)

(4.10)

(4.11)

(4.12)
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1 ^  1   ____
Fs = — J [ — + —(uuu + uww)]dz (4.13)

Titr P

• "Htr ~— i ____  ____
Fb = ---------  f  [— + —(uuu + uww)]dz (4.14)

P 2

(5) IQ, the layer-averaged energy flux due to the mean flow  current in the surface ("s") layer 

in the wave energy equation.

Ks = - ^ | ^ (2I  + ̂ )dz (4.15)
Itr

(6 ) Ns and Nb, the layer-averaged horizontal momentum flux o f wave motion in the surface 

("s”) and bottom ("b") layers in the wave energy equation.

Ns = -|r JiFdz (4.16)

N b = ———  f iFdz (4.17)

(7) Ws and Wb, the layer-averaged wave kinetic energy (double) in the surface ("s") and 

bottom ("b") layers in the wave energy equation.

W ‘ = i / ^ +̂ )dz (4' 18)H *

1 — —

W b =  f ( u 2 + w2)dz (4.19)

(8 ) q2, the wave-averaged value o f the square of the water surface displacement in the wave 

energy equation.
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0
(4.20)

(9) Urms, the root mean square o f velocity near the bed, being used for the calculation o f the 

bottom shear stress in the momentum conservation equations.

(10) Ub, wave-averaged value o f the cubic of the fluctuating velocity near the bed, used for 

calculating the energy dissipation due to bottom friction in the wave energy equation.

In addition to these 14 closure variables which appear explicitly in the depth-integrated, 

wave-averaged equations, the wave trough elevation, tv, is also treated as a closure variable.

Given a set o f wave height, wave period and water depth, these closure variables can be 

estimated from a wave theory. I f  the closure solutions are computed over a comprehensive 

range o f wave height, wave period and water depth, a solution surface can be established. In 

later computer modeling, the values o f the closure variables are interpolated from the 

solution surface for given wave height, wave period and water depth.

The large number o f closure variables suggests that the choice o f a wave theory for 

closure w ill be a crucial step. The linear wave theory would give explicit forms o f solutions 

for all the closure variables, but the error is significant within and approaching a surf zone 

(Thieke 1988). Similarly, Stokes' and Cnoidal wave theory are only valid in deep water and 

in shallow water, respectively, and use o f either one would lim it the range o f applicability o f 

the model. Thus a wave theory consistently valid in deep water and shallow water should be

(4.21)

o
(4.22)
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used for establishing solution surfaces. In this study, the Fourier approximation wave theory 

(Fenton 1987) is chosen. A  brief introduction o f this wave theory is given below.

42  Fourier Approximation Wave Theory

Fourier approximation wave theory is a hybrid analytical-numerical theory for steady 

progressive waves, in which the solution is partially analytical in accommodating the field 

equation, kinematic bottom boundary condition and the periodic lateral boundary conditions, 

but is completed numerically.

Fourier approximation wave theory can be used w ith both Stokes' first and second 

definitions o f phase speed. But the use o f the second definition needs knowledge o f the 

current in the bottom layer which is one o f the unknowns being sought. Only Stokes' first 

definition o f phase speed, w ith U e = 0 ,  is adopted here.

The stream function in  a steady frame (moving with the crest) is represented (Sobey

1989) by the truncated Fourier series:

where the Bj are the dimensionless Fourier coefficients, o f which there are N, co the wave 

angular frequency, k the wave number, g the gravitational acceleration, h water depth, U the 

current in the steady frame, z the vertical coordinate which is measured positively upward 

from mean water level, and X  the horizontal coordinate. This stream function automatically 

satisfies the field equation, the kinematic bottom boundary condition (for a locally horizontal 

bed) and the periodic lateral boundary conditions.

The water surface elevation is defined at M + l discrete points (identified from 0 to M  in

sinhjk(h + z) 
cosh(jkh)

cos(jkX) (4.23)
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the following description) instead o f as a continuous function. The numerical solutions may 

be obtained through nonlinear, least squares optimization. The objective function is

:M+«
0 = l f ?  (4.24)

i

where fi's are defined as follows 

For wave height,

fi = n0-nM-H  (4.25)

For the mean water level

f2 = -^ O |0 + 2 I  !•!, +  % ,) (4.26)
2M i=i

For the kinematic See surface boundary condition at each o f the free surface nodes,

f i = l F ( X i , r i i ) + Q  i = 0,M  (4.27)

For the dynamic free surface boundary condition also at each o f the free surface nodes,

f . =  l ( -ay (X l.’3 .)2 + l ( ^¥(X.,T1i) }2 r  i =  0 M  (4 .28)
2 dx 2 dz

And finally for the Eulerian current

f i. .5 = ^ - U - U E  (4.29)
k

or the Stokes drift

<4-30)k h

where R is the Bernoulli constant, and Q is the mass flux in the steady frame. In solving the 

system, the wave height, water depth and wave angular frequency are given. A ll 2M+6 f's 

should be zero in exact solutions.

The unknown variables in a Fourier wave solution are k, U, Us, Q, R, hj (i=0,l,...M ) and
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Bj, o f which there are M+N+6. Here Ue is equal to zero, based on Stoke's first definition o f 

wave phase speed. These unknowns are im plicitly involved in a set o f 2N+6 constraints. So 

the problem is uniquely defined for M=N and over-specified for M<N. The solutions can be 

obtained by iteration until the objective function, the sum o f the square o f f  functions is 

w ithin a tolerance lim it.

Once these parameters are known, the horizontal and vertical velocities can be 

established from the stream function (Equation 4.23), and the dynamic pressure from the 

Bernoulli equation in the steady frame.

4 3  Solution Surfaces

The value o f a closure variable is uniquely determined by using the Fourier 

approximation wave theory for a given set o f wave height, wave period and water depth. To 

organize the solution surfaces, these three dimensional parameters are combined into two 

dimensionless parameters, a dimensionless water depth (h to2/g) and a dimensionless wave 

height (H/Hmche). Here Hmchc is the Miche (1950) estimate o f wave height lim it, 

Hmiche=0-142 L tanh(kh), where L is the wave length. In establishing the solution surfaces, 

the base 10 logarithmic value o f the dimensionless water depth is plotted as the abscissa, and 

the dimensionless wave height as the ordinate. The reason beyond using the Miche's wave 

height lim it as a scale factor is to make the range o f the ordinate values relatively uniform 

across the abscissa. The broken wave heights corresponding to shallow water depths are 

small. Without scaling, the resolution would be compromised for shallow-water portion o f 

the solution surface which is formed by solution nodes on a uniform rectangular mesh.

The closure variables are also transformed into dimensionless variables using a set o f
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scale parameters. The scale parameters are: oVg for u s and Ums. ®2/g2 for ( j2, N s, Nb,

W s and W b. co4/g2 for i f , co3/g3 for Fs, Fb, K* and Ub, and p-or/g2 for S* and Sb -

A  total o f 546 solution points, corresponding to 21 different dimensionless water depths 

and 26 different dimensionless wave heights, were obtained to construct the solution 

surfaces. The increase in wave non-linearity w ith increase in wave height or decrease in 

water depth required use o f different truncation orders (N) in  the Fourier approximation for 

different portions o f the solution surfaces, as shown in Figure 4.2. The truncation orders 

were often higher than absolutely necessary to guarantee a smooth transition between 

adjacent regions. The solution surfaces are shown in Figures 4.3 through 4.17.

As wave height approaches some lim it, numerical instability starts to occur (Fenton 

1988). As a rule o f thumb, the numerical solutions are reliable for the wave heights within 

95% o f the lim it. The lim it o f application o f the solution surfaces may be determined using 

some wave breaking criterion consistent w ith the Fourier approximation wave theory. 

W illiams (1981) gave the ratio o f wave height lim it to water depth, Hb/h, using high-order 

Stokes expansions and analytically incorporating the crest singularity. These results can be 

used as the upper lim its o f the solution surfaces since they are also based on a high-order 

wave theory. The Williams' short wave lim it is Hb/L=0.141063 for deep water waves, and 

the long wave lim it Hb/h=0.83322 for solitary waves. Fenton (1988) expressed the wave 

height lim its as a function of the wave length and the water depth based on the W illiams’ data

Hb 0.141063 (L /h )+ 0.0095721-(L /h )2 +0.0077829-(L /h)3 
h ”  1 + 0.078834 • (L /h ) + 0.0317567 • (L /h  )2 + 0.0093407(L/h )3

The upper boundary based on this criterion is also shown in Figures 4.2 through 4.17.
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4.4 Closed Integral Equations In One Spatial Dimension

Non-dimensionalizing the depth-integrated, wave-averaged conservation equations and 

substituting the dimensionless closure variables give a set o f closed integral equations. In a 

one-dimensional space with x denoting the wave propagation direction, the non-dimensional 

integral continuity equation is

|!1  + i_ [H  Us + (h + q + q j  Ub]= 0 (4.32)
dt dx

The dimensionless integral momentum equation becomes

^ -[H  Us + (h + q + qff) UbJ + -r~ [H  U s+(h+q + q„.)Ug] = 
dt dx

-(h + q j I ^  + i- IH S s  + fh +  Tl + V S b ]  —
dx dx p

and the dimensionless integral wave energy equation becomes

— [EP + H * W ,  + (h + q  +  q t t ) W b ] - i - | - [ H * F ,  + (h + q  +  q l r ) F b ]  
2 dt dx

(4.33)

= - ^ K s * H ) - H * N s ^ - [ ( N b + ̂ ) * ( h  + q + qtr) ] ^  (4.34)
dx dx 2 dx

- ^ - [  Wb *(h  + q + q j ]  - Db - D,
2 dx

4.5 Closed Integral Equations In Two Spatial Dimensions

As stated in Section 4.1, the closure process was focused along with local wave 

propagation, w ith vector quantities being resolved into this direction. But the two- 

dimensional depth-integrated, wave-averaged equations include velocity components in both 

x and y directions. In this section, it w ill be illustrated that the solution surfaces established 

before can s till be used for evaluating closure variables in two dimensional cases.
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Assigning 0 as the angle between the local wave propagation direction and the x axis, the 

velocity components in the x and y directions are related to the resultant horizontal velocity,

where u and v are the x- and y-velocity components o f wave motion, respectively. 

Substituting Equation 4.35 into the mass, momentum and wave energy equations in a two 

dimensional space, i.e.. Equations (2.18), (2.19), (2.20) and (2.24), all the horizontal velocity 

components w ill be eliminated. Then the closure problems can be proceeded in the similar 

manner as in one spatial dimension.

The energy flux in the bottom layer in the x direction, for example, can be related to the 

defined closure variable, Fb, as follows

The energy flux in the bottom layer in the y direction can be similarly obtained as Fbsin0. In 

this manner, the two dimensional integral equations can be closed with the closure variables 

being evaluated from the established solution surfaces once wave height, water depth, wave 

period and wave propagation direction are known.

The results o f transforming the flux terms o f wave motion into a function o f defined 

closure variables are given below.

U , in the direction o f wave propagation as follows

u = U cos 0
(4.35)

v = U sin 0

|  [ —  + —(uuu + uvv + uww) ]d:

(4.36)
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‘k_
J u2dz = (cos 0 )2 [H  Ns + (h + i) + q j  Nb] (4.37)
-h

1c.

J v2dz = (sin 0 )2 [H  N s + (h + "Hu + q )  N b)] (4.38)
-h

1c _
J Sxx dz = H • [Ss +  Ns (sin 0 )2]) ( h  -t- 71̂  + ri)[S b +  N b • (sin 0 )2] (4.39)
-h

•k
J sxy dz = sin 0 cos 0 [H  • N s - (h + r| + q j  N b] (4.40)

‘k
J Syy dz = H • [Ss + N s (cos 0 )2] + (h + q + q J [S b + Nb (cos 0 )2] (4.41)
-h

1 c  ____     _

J (u2 + V2 + W2)dz = H • Ws + (h + ri + q j  W b (4.42)

1 c  - _______  ____  _____

J ( u 2 + V 2 + w2)dz = H-Ks cos0 (4.43)
i.  2

i« -  _ _ __
[  ^ ( u 2 +  V 2 + w2)dz = H • Ks sin 0 (4.44)
n 2i»

1c

i  p 2
[ —  +  t ( u 3 +  5  V 2 + U w2)]dz = cos 0 [H Fs + (h + q + q j  Fb] (4.45)

f  [—  + ̂ -(u2 v + v3 + v w2)]dz = sin 0 [H F s + (h + q  +  q j  Fb] (4.46)
Jb P 2

Substituting these expressions into non-dimensionalized depth-integrated, wave- 

averaged mass, momentum and wave energy equations results in four closed integral 

equations. The integral continuity equation becomes
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and the closed integral x- and y-momentum equations are

3 3 Tl
— [ H U s  cos 0 + (h + 1 [ + Tiy.) U b ] + t  [ H  U s  cos2 0 + (h + T| + r^ ) U b  + (h + —)T|] 
dt dx 2

+ i_ [H U s2^ ^  + (h + q + Titr)U bV b]=_:n | 1  + T-[H (Ss + sin2 0Ns) (4.48)
dy 2  dx dx

+(h + t i + TiJCSb + sin2 0 Nb)] - - r - [— — ( H  Ns + (h +  r\ + r i j  Nb)] - —
dy 2  p

3 — 3 —
— [H Us sin 0 + (h + t j + tj^) V b] + —— [H U 2 cos20 + (h + r| + !)„) Ub Vb] 
dt dx

+ Y "[H  Us2 sin2 0 + (h + q + r^ ) Vg + (h + ̂ ) r j]  = -rj (h n s (4.49)
dy 2  dy dx 2

+(h + r{ + 1) ) N b] } + [H(Ss + cos2 0 N s ) + (h + t\ + r\a)(Sb + cos2 0 N b) ]  - —
dy p

Finally, the closed integral wave energy equation is

, ^ _
[Tl2 + HWs + (h + n + r\a) Wb] 1— {C 0 S 0[H(F5 + K*) + Fb (h + r\ + r \ J ] } +

2  dt dx

cos2 0H N s  + ( N b cos20 + -— )(h + T| + rip.) - - [ W b (h + T) + t^ )] +
dx 2  dx 2  dx
sin 20 dU s d V s, -  . s in 2 0 ,d V b dU b,

H  Ns— -— (~r— + — ) + (h + T) + TU) Nb— -— (—5 —  + - 5 — )  + (4.50)
2  dy dx 2  dx dy

— [sin0[H (Fs +  K s ) +  (h +  11 +  T) ) F b ] } +  ( h  +  t |  +  t | B. ) ( N b — r ---h - ~ )  b +
dy 2  2  dy

K h  +  i i  +  r U  W b] +  H N s  s in 2 0 ^  f  -  f  w U ?  -  f  * b co H 2
2 dy dy 3tc

where fw is the bottom friction factor and fwt is a dimensionless factor for calculating energy 

dissipation rate due to wave breaking.
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5 TRANSIENT WAVE PROPAGATION IN A ONE-DIMENSIONAL SPACE

In this chapter, a numerical scheme based on the method o f characteristics is 

developed fo r solving the one-dimensional integral equations w ith  apparent stress closure 

as given in Chapter 4. First, the procedure to derive characteristics and characteristic 

equations is illustrated, and the characteristics o f this system in deep water, intermediate 

water and shallow water are demonstrated for typical wave conditions. Then a scheme 

for obtaining numerical solutions o f the characteristic equations and open boundary 

conditions are proposed. The proposed numerical scheme and open boundary conditions 

are tested for simulating the evolution o f mean wave parameters in four cases: evolution 

o f an in itia l water mound, and wave propagations over a flat beach, over a ripple bed, and 

over a slope. Finally, the developed model is applied to simulate the cross-shore wave 

propagation at the Egmond Beach, the Netherlands where lim ited field data are available 

for comparison w ith the numerical results.

5.1 Characteristic Equations

The integral equations w ith apparent stress closure in  one spatial dimension given in

Chapter 4 (Equations 4.32 through 4.34), can be generalized to the form

+ a ^ o i ) =  Q(Xftf<I)) (51)
dt dx

where O, is a vector variable denoting wave setup, flow  momentum and wave energy:

O, = q

0 2 = H U ,+ (h  + n + Tilr)U b (5.2)

^ 3  = + HWS + (h + q + Tl. )Wb ]
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F(<t»i) denote fluxes o f mass, momentum and wave energy, and Q(x,t,<E>i) are the source or 

sink terms, which may be a function o f x, t, and Oi, but not o fd O /d x .

As discussed in Chapter 3, the method o f characteristics (MOC) is appropriate for 

obtaining numerical solutions o f this system. In MOC, the firs t step is to derive the 

characteristic equations. Since the information to be sought is mean wave parameters,

i.e., wave height, H, wave setup, rf, and undertow current, Ub, the integral equations (5.2) 

are transformed w ith dependable variable directly in these three parameters

3W 3W
^ r -  + A « V -  = S (x,t,W ) ' (5.3)at ax

where W  is a dependent variable vector

W = [H, q, U b]T (5.4)

S is a source or sink vector, and A  is a 3x3 Jacobian coefficient matrix. The exact entries 

o f this coefficient matrix are given in Appendix A. Equation (5.3) represents a quasi- 

linear system.

The nature o f information propagation o f the system can be described by the 

characteristics, i.e., eigenvalue and eigenvector, o f the coefficient matrix. The 

eigenvalues, A., o f the coefficient matrix A are defined as the roots o f the follow ing 

polynomial (W ylie and Barrett 1982)

d e t|A -R | = 0 (5.5)

where "det" denotes the determinant, and I is a 3x3 unit matrix for a three-equation 

system. Equation (5.5) is generally a polynomial in X o f the third power. Three 

eigenvalues, say, X|, X2and X3 , may be obtained from Equation (5.5). I f  a ll three roots are
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real and distinct, the system is said to be hyperbolic. Physically, the three eigenvalues A.j, 

> .2  and X.3 are the speeds at which the system information propagates. A  curve defined in 

the x-t space with a local gradient equal to the eigenvalue describes the information 

propagation path. This curve is termed as the characteristic curve, o r simply the 

characteristics, o f the system (W ylie and Barrett 1982).

Associated with each eigenvalue, there is a characteristic equation in the form

A ^ - ]W  = l r S i = 1,2,3 (5.6)
dt dx

where i i is a left eigenvector o f the coefficient matrix A, being defined as

- [A -X / ]  = 0 (5.7)

Equation (5.6) reduces to

-  dW  -
t t —  = Z V 5 i = 1,2,3 (5.8)

along the characteristic curve

d d . d _ _
—  = -  + A.,-—  0 .9 )
dt dt dx

In contrast w ith Equation (5.6), Equation (5.8) is an ordinary differential equation. The 

numerical solutions can be obtained by integrating the characteristic equation (5.8) along 

the characteristic curves.

This process can be illustrated by obtaining solutions at point O at the time level t '.  as 

shown in Figure 5-1. First three eigenvalues at the point O’ are calculated based on the

values at the time step tn l . These eigenvalues are approximately used to locate the points

at which three characteristic curves through point O intersect with the tn' : line. The x
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coordinates o f the points, say, P, Q and R, relative to O' are respectively equal to X -̂At, 

where At is the time step.

t

„n-l

Figure 5.1: Illustration o f Solution Process 

The region OPR is the domain o f dependence for the point O. The value o f a variable at 

P, Q or R is estimated using 3rd order polynomial interpolation from the values at the 

closest four grid points. Then the characteristic equations are integrated along the three 

characteristics, resulting in three equations

J. . (Wo - W j ) = A t - ^ J i S j=P, Q and R (5.10)

The solutions at point O can be subsequently solved from these equations.

Numerical stability is secured i f  the domain o f dependence for the difference 

Equations (5.10) covers that o f the differential Equations (5.8). This is analogous to the 

Courant-Friedrichs-Lewy (1928) condition (or CFL number) which was originally developed 

for a linear system. For a nonlinear system, the CFL condition is only used as a general 

guideline to estimate the time step corresponding to a given space step

C = — IH»s. < i (5.11)
Ax

where |X.|maxis the maximum eigenvalue throughout the entire simulation period and over
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the entire computational domain i f  a constant and uniform  time step is to be used. 

Ultimately, this time step should be adjusted according to numerical experiments.

5.2 Characteristic Properties

In this section, the characteristics o f this system w ill be investigated fo r different 

water depths and wave periods. The eigenvalues and eigenvectors for four cases w ith 

different combination o f water depth and wave period are given in Table 5.1. In the 

table, H is wave height, h is the water depth, T is the wave period, g is the acceleration o f 

gravity, and L 0 is the deep-water wave length, equal to gT2/27 t.

Table 5.1 Characteristics for Different Water Depths and Wave Periods

Case H

(m)

T

(Sec.)

h

(m)

h/Lo

(m/s)

Eigenvalue

(m/s)

Eigenvector

ft h h

A 0.5 10 1 0.006 3.13

4.13 0.817 1.0 0.133

2.94 -0.233 1.0 0.206

-3.16 0.003 1.0 -0.191

B 1.0 10 100 0.64 31.3

31.32 0.005 0.601 1.0

9.15 1.0 -0.005 -0.002

-31.32 0.001 -0.601 1.0

C 1.0 10 10 0.064

? 10.01 | 0.297 1.0 0.611

19.901 7.88 1.0 -0.194 -0.098

-9.90 0.003 1.0 -0.605

D 1.0 12 10 0.045 9.90

10.05 0.348 1.0 0.510

8.18 1.0 -0.255 -0.115

-9.91 0.004 1.0 -0.505
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In Cases A  and D, the ratio o f water depth to wave length, h/Lo, is less than 0.05; in  Case 

C, 0.05<h/Lo<0.5; and in Case B, h/Lo>0.5. Thus these fours cases cover from deep- 

water wave condition to an intermediate water wave condition to shallow water wave 

conditions (Dean and Dalrymple 1984). The phase speed o f long waves, -y/gh, is also

given in Table 5.1 for comparison w ith the eigenvalues. From Table 5.1, the fo llow ing 

observations are appropriate:

1. In all cases studied, the three eigenvalues are real and distinct. Thus the system is 

generally hyperbolic.

2. Except for the very shallow water wave condition, i.e., in case A, the firs t and third 

eigenvalues are almost equal to the long-wave speed in magnitude. This suggests that 

the system to some extent be sim ilar to shallow water wave equations. The third 

eigenvalue is always negative. The negative sign denotes information propagating in 

a direction opposite to the x axis. The characteristics corresponding to the 

eigenvalues o f an magnitude approximately equal to the long-wave speed are termed 

(Katopodes and S trelkoff 1979) as wave characteristics. The wave characteristics 

may travel in both positive and negative x directions.

3. The second eigenvalue for each case is almost equal to the wave group speed. Thus 

the corresponding characteristics w ill be termed as an energy characteristics in this 

context.

4. As indicated in Equation (5.6), the eigenvector actually measures the degree o f 

cohesiveness among the equations in a system. Under deep water wave conditions 

(Case B), the first component o f the eigenvectors o f wave characteristics is always

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

much smaller compared to other the second and third components, while the first 

component o f the eigenvector for the energy characteristics is much greater than two 

other components. This means, in deep waters, that the wave characteristic equations 

are almost independent o f the wave energy equation and that the energy characteristic 

equation is almost independent o f the mean-flow mass and momentum equations. 

Thus the wave setup and undertow current are prim arily described by the mean flow  

equations with the wave height is almost governed by the wave energy equation 

alone. As water shallows, the first component o f the eigenvector o f the positive wave 

characteristics increases. This indicates that in shallow water the mean flow is more 

influential on the transfer o f wave energy, and vice versa.

5. I f  other conditions remain the same, a larger wave period means that the water is 

relatively shallower. Thus, the mean flow  mass and momentum transfer and wave 

energy flux are more closely related, as suggested by the comparison o f the 

eigenvectors o f Case C and Case D.

6. Regardless o f water depth conditions, the first component o f the eigenvector 

corresponding to the negative eigenvalue is always much smaller than two other 

components. This suggests that the interaction between the transfer o f wave energy 

and the transfer o f mean flow  mass and momentum is directional. Such an interaction 

is only significant in the direction o f wave propagation.

5.3 Open Boundary Conditions

The numerical simulation o f wave propagation normally involves two types o f
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boundary: open boundary and beach boundary. An open boundary is the boundary where 

information can pass through freely, and a beach boundary is where water surface 

intersects beach profile. The location o f the open boundary is normally fixed; in contrast, 

the beach boundary moves back and forth as water surface oscillates up and down. In 

this section, only open boundary conditions are discussed. The beach boundary 

conditions w ill be dealt w ith in the study o f wave propagation over a slope in  Section 5.6.

53.1 Open Boundary Conditions

The present three-equation system requires three constraints to be specified at the 

boundary. To permit the interior information crossing the boundary freely, the 

characteristic equations o f the outgoing characteristics should be used as part o f the 

boundary conditions. I f  the flow is subcritical, there are at most two outgoing 

characteristics. Additional constraints have to be specified as supplements to the 

characteristic equations o f outgoing characteristics. The number o f the additional 

constraints should equal the number o f equations minus the number o f outgoing 

characteristics.

An ideal situation would be to supplement the outgoing characteristic equations with 

field data. But field data is only rarely available. Accordingly, approximate boundary 

conditions should be so imposed that no detrimental wave reflection takes place at the 

boundary.

Hedstrom (1979) developed approximately non-reflecting boundary conditions for a 

homogeneous, quasi-Iinear system. The procedure to develop Hedstrom’s approximate
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open boundary condition is brie fly introduced below. For a hyperbolic system with n 

equations, the n eigenvalues o f the system are ranked in acceding order

Xi <X2 < . . . < K  (5 .12 )

Suppose that m eigenvalues are negative at an open boundary and that n-m eigenvalues 

are positive. I f  the negative eigenvalues represent outgoing characteristics, then there are 

m outgoing characteristics and n-m incoming characteristics at the open boundary. The 

problem o f reflection is interesting only i f  1< m < n. This is the case for the present study 

since the wave-induced mean flow  is normally subcritical.

Hedstrom (1979) proved that the following supplemental boundary conditions

-  dW
£. • —— = 0 (m<i<n) (5.13)

dt

gives no waves coming into the solution domain from the boundary i f  there are only 

simple waves going out. I f  a shock o f strength £ leaves the boundary, condition (5.13) 

produces an incoming wave o f strength 0(£3). In Equation (5.13), W  is a dependent 

variable vector, and ~ti is a le ft eigenvector.

Comparing the general characteristic Equation (5.8) for a homogeneous system (S=0) 

w ith Equation (5.13), the condition (5.13) is equivalent to

-  dW
— = 0 (m<i<n) (5.14)

dx

In the linear case with the constant coefficient matrix, the eigenvalues and eigenvectors 

are constant. The condition (5.13) and (5.14) then become

f  • W = constant (m<i<n) (5.15)
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This is a Riemann invariant along the incoming characteristics, which states that the 

characteristic variables corresponding to incoming characteristic curves are constant.

To use conditions (5.13) as approximately non-reflecting boundary conditions, the 

problem itse lf should be at most weakly reflective. In the context o f wave propagation, 

the constraint o f being weakly reflective requires that the bottom slope is m ild and that 

bottom friction is relatively small.

53.2 Typical Boundary Conditions

In one-dimensional wave simulation, the wave period, bathymetry data and the wave 

height at the offshore boundary are normally given. In the follow ing discussions, the 

offshore boundary from which waves enter the computational domain is referred as an 

inflow  boundary, and the other boundary from which waves leave the computational 

domain as an outflow boundary. A t the offshore boundary, only two boundary conditions 

are required since the wave height is known. For a subcritical flow, there is one outgoing 

characteristics at the inflow  boundary (see Table 5.1). The outgoing characteristic 

equation and condition (5.13) along one incoming characteristics are sufficient to give the 

two boundary conditions. In this case, there are two incoming characteristics at the 

inflow  boundary, but only one o f them is needed. Since the wave height is given at the 

inflow  boundary, the characteristics corresponding to wave energy propagation should 

not be used to avoid redundancy because the propagation o f wave height profile is 

predominately governed by the energy characteristics. Hence, the condition (5.13) along 

the incoming wave characteristics should be used.
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A t an outflow boundary, i f  no other constraints are given, two outgoing characteristic 

equations and condition (5.13) along the incoming wave characteristics are sufficient to 

form the open boundary conditions.

5.4 Case Studies

In this section, the proposed numerical scheme and open boundary conditions w ill be 

examined in four case studies. These four cases are: evolution o f an in itia l water mound, 

wave propagation over a horizontal seabed, wave propagation over a ripple bed and wave 

propagation over a slope. In a ll four cases, the wave height and undertow velocity are 

zero at the beginning o f simulation.

Case I - Evolution of An Initial Water Mound

An water mound is in itia lly  located in the middle o f a computational domain which is 

1000 m long and 10 m deep, as sketched in Figure 5.2. The shape o f the in itia l water 

mound is described by

Tit_0(x) = ( l —I* -5 0 -0!)2 for 350 < x  <650 
lu0 150 (5.16)

r u ( x )  = 0 elsewhere 

The water mound w ill evolve w ith time and eventually propagate out the domain. Thus,

both ends o f the domain are outflow boundaries. This case study is designed to check the

performance o f the proposed open boundary conditions and wave propagation speed

which should be approximately equal to the long wave phase speed. A spatial step o f 10

m and a time step o f 1 second are used with a CFL number approximately equal to I .
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; h=LOm ;

---------------------------------------------- ±-------------------l_» x

\<----------------------------------  1000 m --------------------------------- >\

Figure 5.2 Sketch o f the Computational Domain o f Case I

Figures 5.3 and 5.4 show the time histories o f water surface profiles and flow velocity, 

respectively. As shown in Figure 5.3, the in itia l water mound first splits into two sub

mounds o f the same shape. The two sub-mounds maintain their shape and propagate in 

opposite directions. These two sub-mounds may be viewed as two wave packets which 

consist o f wave components o f various wave lengths. Each wave packet moves at a 

speed o f about lOm/s (estimated from the advancement o f the toe o f the sub-mound over 

consecutive time intervals). This speed is almost identical to the phase speed o f long 

waves (C=^/gh = 9.96 m/s). Thus, the wave propagation speed is correctly simulated by 

the proposed numerical scheme.

After the two sub-mounds leave the computational domain, the water surface 

becomes level immediately, which implies that the imposed boundary conditions do not 

generate appreciable numerical reflection at the boundaries. The flow velocity shown in 

Figure 5.4 are asymmetric because the two wave packets propagate in the opposite 

directions. A fter the two sub-mounds are completely separated, the magnitude o f the 

flow velocity can be approximated by the water particle velocity in the long wave 

situation, i.e., u=T] C/h, where rj is the water surface elevation.
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Case II - Wave Propagation Over A Horizontal Seabed

A wave train, w ith a height o f lm  and a period o f 10 seconds, propagates into a 

domain o f 1000 m long and 10 m deep, as illustrated in Figure 5.5. The wave incident 

boundary is an in flow  boundary and the other boundary is an outflow  boundary. This 

case study aims to test the inflow  and outflow boundary conditions, wave phase speed 

and energy transfer speed.

Still wave surface

Waves h=10m

x
1000 m

Figure 5.5 Sketch o f the Computational Domain o f Case II

The wave characteristics and water depth o f this case are the same as Case C studied 

in Section 5.2. The three eigenvalues are 10.01, 7.88 and -9.90. The firs t and th ird 

eigenvalues represent the propagation speed o f wave characteristics in the positive and 

negative x direction, respectively. And the second eigenvalue represents the propagation 

speed o f energy characteristics. A spatial step, Ax=10m, and a time step, At=0.95 second, 

are used w ith a CFL number o f about 0.95. The wave height o f 1 m is instantly imposed 

at the inflow  boundary at the beginning o f the simulation and maintained so throughout 

the simulation.

The simulated wave height profiles at eight time levels are presented in Figure 5.6. 

The wave height profiles advance at a speed o f 7.9 m/s (estimated from the advancement
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o f point A  on the wave height profiles) which is close to the wave group speed, Cg, o f

8.01 m/s, as estimated from the Fourier approximation wave theory. The rate o f 

lengthening o f the wave region must be equal to Cg because the rate o f energy input at the 

inflow  boundary is E Cg.(Mei 1983). Also obvious in the wave height profiles is the 

numerical diffusion on the front part o f the wave height profiles. The numerical diffusion 

is proportional to A x2/A t (Potter 1973). Use o f a larger CFL number may reduce the 

numerical diffusion, i f  numerical stability can be ensured .

Figure 5.7 shows the evolution o f mean water surface profiles. As waves pass by, 

the mean water surface rises as a result o f wave mass transport. Subsequently, the 

surface disturbance propagates forward at a speed equal to the eigenvalue o f the wave 

characteristics. Since this speed is faster than the energy transfer speed, thus the zone 

w ith the elevated mean water surface w ill gradually lengthen. The rate o f lengthening is 

equal to Vws = — X+e, where X+w and X* are the positive eigenvalues o f wave and energy

characteristics, respectively.

The mean flow  velocities below the wave trough at eight time levels are shown in 

Figure 5.8. The mean flow  is generated as a result o f wave momentum flux. The 

magnitude o f the velocity is governed by the gradient o f wave apparent stresses. Under 

the present wave conditions, the mean flow velocity is weak, only about 5 cm/s. When 

the wave fie ld approaches steady state, the mean flow current also disappears.

Figures 5.6 through 5.8 indicate no numerical reflection at both the inflow  and 

outflow boundaries as the wave train passes trough the computational domain.
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Case HI Wave Propagation Over A Ripple Bed.

This case is designed to study the effect o f bathymetric variation on wave 

propagation. The bed form, shown in Figure 5.9, has an amplitude o f 1 m and a wave 

length o f 100 m, w ith  an average water depth o f 10 m.

2

S W Lo

•2

-4

•6

•8

•to

•12
900700 BOO 1000200 400 6000 too 300 500

Distance from wave incident boundary (m)

Figure 5.9 Computational Domain For Case II I

The incident waves are 2 m height with a period o f 10 seconds. In order to make the 

impact o f the bed form  appreciable, a greater wave height, compared to Case II, is used.

When surface waves are incident in a region o f undulating sea bed topography, it is 

well known that wave energy may be scattered by the bed forms (Massel 1989). In one 

spatial dimension, there generally exists the interaction o f back-scatter and forward- 

scatter. The degree o f back-scatter depends on the ratio o f bed form amplitude to water 

depth and on the ratio o f wave number (assuming horizontal bed) to the bed-form wave 

number. The back-scatter is maximized when the wave number to bed form wave
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number is equal to 0.5 (Mei 1985). In this case, the ratio o f bed form amplitude to water 

depth is equal to 0.1, and the ratio o f wave number to bed-form wave number is to 1.08. 

Thus no significant reflection is expected, and the present model is applicable. A  spatial 

step o f 10 m and a time step o f 0.95 second are used.

Figures 5.10 through 5.12 show the computed wave height profiles, mean water 

surfaces and undertow velocities at 8 time levels. Before a steady-state wave field is 

reached, the evolution o f wave height, wave setup and undertow velocity are similar to 

those in Case II. A fter the steady state wave field being established, the wave height 

profiles vary in phase with the bed form, while the wave setup and undertow velocities 

display an out-of-phase pattern. The in-phase variation o f wave height w ith the bed form 

is like ly caused by wave shoaling. The wave height increases as water depth decreases 

(In this case, the ratio o f water depth to deep water wave length is between 0.0576 and 0 

0705), in other words, the wave height increases as the bed rises. On the other hand, the 

wave setups vary w ith the gradient o f wave mass flux, and the undertow velocities vary 

w ith the gradient o f wave apparent stresses. The wave mass flux and wave apparent 

stresses generally increase as wave height increases. Where the wave height increases, 

the gradients o f the mass flux and apparent stress are positive, resulting in a wave 

setdown and a undertow current in the negative x direction. The spatial variations in the 

steady state profiles o f all three variables are small. This suggests that the propagation o f 

mean wave parameters be only slightly affected by the bed form for the wave conditions 

studied. The wave height profiles advance at a speed o f about 7.85 m/s, which is almost 

identical to the wave group speed for a uniform depth o f 10 m.
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Case IV Wave Propagation Over A Slope

In this case, both open boundary and beach boundary are present. Thus, the beach 

boundary conditions have to be specified in addition to the open boundary conditions. 

The ensuing discussion on the beach boundary conditions centers on slow ly varying, 

dissipative beaches. Strongly reflective boundaries, such as at vertical sea walls, are 

beyond the scope o f this study because the use o f a progressive wave theory in the 

apparent stress closure lim its the present model from simulating wave reflection.

In this study, a beach boundary is defined as where the mean water surface intersects 

w ith the beach profile. Based on this definition, the water depth at the beach boundary is 

always zero, and the wave height can legitimately be set to zero. The region around the 

beach boundary is also called a swash zone. In the swash zone, sheet flow  normally 

prevails. The instantaneous flow  velocity at the wave front may be significant. But the 

mean velocity over a wave period may still be small. To avoid introducing much 

complexity in dealing w ith  the swash zone, the mean flow velocity is assumed to be zero 

at the beach boundary.

The wave setup at the beach boundary can be estimated from a lowest order finite 

difference approximation to the continuity equation for the computational cell bordering 

the beach boundary, as shown in Figure 5.13.

n r ' =  n ; + ̂ [ h ; u ,;., +(h„_, + n ; , ,) u ,.;., j (5.17)

where the superscript "n" denotes the previous time step, and the subscript "m" denotes 

the beach boundary. In this manner, the computational cell is treated as a water storage
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the elevation o f which rises when water pumps in, or falls when water goes out. This is, 

o f course, a crude approximation which suppresses much o f dynamics in the swash zone. 

But this approach is convenient, besides, it does not prevent the model from correctly 

simulating wave transformation from deep water up to the swash zone.

still water level

mean water level

waves

m-1

Figure 5.13 Schematics o f Beach Boundary Conditions 

Unlike an open boundary, the beach boundary moves back and forth as the mean 

water surface oscillates up and down. The active computational domain has to be 

adjusted at each time step. A  computational cell is deemed being active i f  it  satisfies

z + Tjn > A  (5.18)

where z is the bottom elevation, rp  is the wave setup, and A is a small depth cut-off 

value which is required for the sake o f numerical stability. It is set at 0.1 m in this study.

The beach boundary conditions along w ith the proposed numerical scheme and open 

boundary conditions are used to simulate wave shoaling over a 1:100 slope, as shown in 

Figure 5.14. The incident waves are one meter high w ith a period o f ten seconds. The 

suitability o f the present model for simulating wave propagation over the slope is checked 

by the surf parameter £<,. which is defined as (Battjes 1974)
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tan (3
(5.19)

where Ho is the incident wave height, L0 the deep water wave length, and tan(3 is the 

bottom slope. For the slope, ^  is equal to 0.125, so it can be classified as being slowly 

varying and dissipative. The present model is thus applicable.

The model is set up based on a uniform grid spacing o f 10m and a time step o f 0.95 

second, w ith a Courant-Friedich-Lewy number o f about 0.95 at the deep end o f the 

domain. The energy dissipation due to wave breaking and bottom friction  are also 

included using the models described in Chapter 2. The bottom friction factor is assumed 

to be equal to 0.04.

Figures 5.15-17 show the evolution o f wave height profiles, variation o f mean water 

surfaces and undertow currents at eight time levels. The transients o f the wave shoaling 

process reveal some basic physics in wave propagation in shallow waters. Some o f the 

features are summarized as follows:

wave 
incident —  

boundary

100 m 1000 m

Figure 5.14 Sketch o f the Computational Domain for Case IV
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• Wave height increases until the energy dissipation rate due to wave breaking exceeds 

the energy influx. The maximum wave height occurs at water depth 3.8 m, with a 

height/depth ratio o f 0.32, much lower than the theoretical value in the range from 0.7 

to 0.8. This is because the energy dissipation was computed based on the fraction o f 

wave breaking (random wave breaking model). Since the beach is dissipative, the 

wave height near the shoreline has gradually decreased to zero.

• Wave height profiles reach steady state relatively faster than wave setup and 

undertow current. The length o f time for wave setup and undertow currents to 

approach steady state is about triple the time for wave propagating through the 

simulation domain.

• As waves approach to the shoreline, the mass transport is predominantly shoreward, 

causing a significant water surface pulse and shoreward mass transport. A fter waves 

reach the shoreline, seaward undertow currents develop. The transient wave setup and 

undertow current in shallow water are much greater than steady state wave setups and 

undertow currents. This suggests that the transient dynamics in coastal process could 

be very important though the transient action only lasts in a short period o f time.

• The steady state wave setup at shoreline is 0.12 m. which is consistent w ith empirical 

estimates (Dean &  Dalrymple 1984) for a breaking wave height to depth ratio 

(breaker index) o f 0.32, rather than the value o f 0.7.

• Though wave reflection is excluded by the present model, the reflection o f wave 

setup and undertow current is simulated in Figures 5.16 and 5.17.
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5.5 Simulation of Cross-Shore Wave Propagation at Egmond Beach

Egmond beach is located on the North Sea coast o f the Netherlands. The contours at 

the beach are almost parallel to the shoreline and typical wave direction is normal to the 

shoreline. Given the contour characteristics, a one dimensional model should be 

adequate for simulating cross-shore wave propagation at the beach.

The beach profile shown in Figure 5.18 is typical in coastal regions, featuring 

multiple offshore bars. Derks and Stive (1984) observed the wave characteristics at the 

beach, measuring wave height and wave setup at several nearshore locations. The 

observed offshore significant wave height is 2.78 m and the significant wave period is 8.7 

seconds.

The computational domain is about 3000 m long, w ith  the water depth at the offshore 

boundary being about 16 m. A  uniform spacing o f 10 m is used with a corresponding 

time step o f 0.7 second (the Courant-Friedich-Lewis number at the offshore boundary is 

equal to about unity.

2
0
2
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•6
6

10
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16

18
30002000 25000 1CC0 1500500

D is ta n ce  fro m  O ffs h o re  B o u n d a ry  (m )

Figure 5-18 Bathymetric Profile A t Egmond Beach 
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The numerical scheme as discussed in Section 5.1 is implemented, the open boundary 

conditions follows Hedstrom's methodology presented in Section 5.3, and the beach 

boundary conditions are specified as in Case IV  in Section 5.4. Wave forcing is suddenly 

imposed at the offshore boundary and remains constant thereafter. The system is 

assumed to be in itia lly  quiescent, w ith wave height, wave setup and undertow current all 

equal to zero at the beginning o f simulation.

The predicted transient wave height profiles at 8 different time levels are shown in 

Figure 5.19. A fter seven minutes, a steady state wave height profile is established. The 

evolution o f the mean water surface level and undertow currents are shown in Figures 

5.20 and 5.21. It takes about fourteen minutes for the wave setup and undertow currents 

to reach an equilibrium  state. Before the steady state is reached, the characteristics o f the 

evolution o f wave height, wave setup and undertow currents are sim ilar to those observed 

in the simulation o f wave propagation over a uniform slope in Section 5.4. Seaward 

undertow currents start to develop when waves reach the shoreline. The seaward 

undertow currents then penetrate toward the offshore boundary from the shoreline. 

Again, the maximum transient wave setup and undertow currents are much greater than 

the steady state values. The observed wave height and setup are also plotted in Figures 

5.19 and 5.20. Good agreement is found for both wave height and wave setup.

The four case studies and the simulation at the Egmond Beach lead to the follow ing 

conclusions: (1) the numerical scheme is effective for simulating the evolution o f mean 

wave parameters in one spatial dimension; (2) the open boundary conditions work 

satisfactorily; and (3) the beach boundary conditions are adequate for dissipative beaches.
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6. MODELING OF WAVE PROPAGATION IN TWO SPATIAL DIMENSIONS

This chapter presents a numerical framework for the evolution o f wave height, wave 

setup and wave-induced currents in two horizontal spatial dimensions, based on the 

method o f characteristics. The major issues are (1) estimate o f wave propagation 

direction, which is critical to the evaluation o f wave apparent stresses, (2) a numerical 

scheme taking into account the fact that there are infin ite characteristic equations in two 

spatial dimensions, and (3) open boundary conditions. First, the procedure for deriving 

characteristic equations is introduced and the characteristics o f the system are 

investigated for typical coastal wave and bathymetric conditions. A  numerical scheme 

based on bi-characteristics is then developed, along with the specification o f open 

boundary conditions. Three case studies demonstrate the performance o f the numerical 

scheme and open boundary conditions. Subsequently, various approaches for modeling 

wave propagation direction over irregular bathymetry are discussed. Finally, the model is 

applied to wave focusing by a submerged shoal, under the experimental conditions o f 

Berkhoff et al. (1982).

6.1 Characteristic Equations

The integral model for mean wave parameters in a two-dimensional space was 

presented in Chapter 4 (Equations 4.42 through 4.45). This model can be written in a 

vector form

90 0FX($>) 3F (d>)
—  + ■ -1- - ■■ + — y- ----- = Q(x, t, <t>) (6.1)
at ax By

where O is a dependent variable vector composed o f wave setup, mean-flow momentum
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components, and wave energy

O, =H U S +(h + r[+ riIr)Ub,

® 3=H V f + (h  +  T i+ rilr)Vbt (6‘2)

<t>4 = g ;n2+H W s+ (h + r f + r itr)W b

Fx(0 ) and Fy(0 ) represent mass, momentum and energy fluxes, and Q(x,t,d>) are the 

source or sink terms, being a function o f x, t, and d>, but not o f the derivatives o f O.

To apply the method o f characteristics, these equations are transformed a set o f quasi- 

linear equations o f H , f f , Ub and Vb .

where W  is the dependent variable vector

W = [H,TT,Ub,V b] (6.4)

and A x and Ay are the coefficient matrices

dF
A x  = T - £-  .  ( 6 - 5 )dWj aWj

The details on the entries o f A x, A y and Q are given in Appendix B.

Nonlinear hyperbolic problems are known (Hirsch 1983) to be weakly “ dissipative.”

i.e., the solution may develop spontaneous shocks. Physically, the homogeneous part o f 

such first order quasi-linear partial differential equations admit wave-like solutions. The 

wave front separates the points already influenced by the propagating disturbance from 

the points not yet reached by the wave. I f  S(x,y) =S0 (where S0 is a constant) is such a 

phase surface o f the wave, a solution o f the form

W = W e*x-y) (6.6)
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represents a general wave. Substituting Equation (6.6) into Equation (6.3) gives

where I is a 4x4 unit matrix.

To have nontrivial solutions for W, the determinant o f the square-bracketed matrix 

must be zero. As the normal vector o f the wave front surface, n , is proportional to 

gradient o f the surface function, VS, the necessary and sufficient condition for the 

existence o f non-trivial solutions for W is expressed by

which leads to a fourth order polynomial in X.

I f  the four roots o f X are a ll real and distinct, the system is a hyperbolic system. And 

each eigenvalue defines a fam ily o f characteristic surfaces the normal vector o f which is 

(-A, nx. ny). On the characteristic surface, the original system o f equations can be 

reformulated into differential relations with differentiations along the surface only. The 

first-order system of Equation (6.3) can be transformed through a linear combination o f 

the form,

(6.7)

det\ l n t + A,nx + A , n \  = 0 (6.8)

Equation (6.8) is an eigenvalue problem. Defining

K  = Axtix + Ayny (6.9)

Then Equation (6.8) may be reduced to

det|K -  A.l| = 0 (6.10)

j  = 1„4 (6.11)
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where i j  is a le ft eigenvector, which is defined as

I  f (Axnx +  Ayny -  X /) = 0 (6.12)

Since the determinant o f the bracketed matrix is zero, an infinite set o f solutions may be 

obtained fo r £j from Equation (6.12). On substituting any set o f solutions into Equation 

(6.12), a ll the differentiations in the equation are performed along the characteristic 

surfaces.

The analytical expressions for the characteristics and characteristic equations o f this 

system are not available due to the complex form o f the integral equations. As indicated 

in Chapter 2, the mean-flow continuity and momentum equations in the present system 

are sim ilar to the shallow water wave equations. To assist in appreciating the present 

system, the characteristics and characteristic equations for the shallow water wave 

equations are given in Appendix C.

There are some fundamental differences in generalizing the method o f characteristics 

from two independent variables to three. W ith two independent variables, transforming 

the governing equations into characteristic equations reduces partial differential equations 

to ordinary differential equations. For a system o f three independent variables, the 

characteristic equations are still partial differential equations, though o f one fewer 

independent variable. Another significant difference is that for two independent 

variables, the characteristic curves passing through a point equal the number o f equations, 

whereas for three independent variables the characteristic surfaces passing through a 

point are infinite. Accordingly, the approaches based on the method o f the characteristic 

in (x-y-t) space are totally different from those in (x-t) space.
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6.2 C haracteristic Properties

To further appreciate this system, the eigenvalues and eigenvectors are computed 

numerically fo r the following conditions: wave direction <|>=7c/2(with x-axis), wave 

height=l.O m, water depth h=10 m, mean water elevation r\ =0, and mean flow  velocities 

under wave trough Ub=0.5 m/s and V b=0.5 m/s. The eigenvalues depend on a specific 

direction or azimuth which ranges from 0 to 2n, as shown in Figure 6.1.

n y wave
.direction

Figure 6.1 Sketch o f Direction Domain 

The four eigenvalues are plotted in Figure 6.2. Also shown in the figure are the three 

eigenvalues o f the shallow water wave equations under the same conditions along w ith 

their analytical expressions, two identified by Xu denoting wave characteristics, and the 

other by denoting flow  characteristics (Katopodes 1979). The flow characteristics is

Vgh + ub cos0 + v bsin0

X  ub cos0 + vb sin0
>

- j g h + ub cos0 + v b sin0
-10 ‘

3600 30 60 90 120 150 180 210 240 270 300 330

Angle with X>axis (degree)

Figure 6-2 V aria tion  O f Eigenvalue X W ith Azimuth 0
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unique in the two spatial dimensions. The magnitude o f the eigenvalue o f the flow  

characteristics is w ithin the order o f magnitude o f the flow  velocity. The eigenvalue 

labeled by A*, is the additional eigenvalue for the present system. This eigenvalue is 

called an energy characteristics because its value is related to the wave group speed, and 

physically it  is the speed o f wave energy transfer. The eigenvectors o f the present system 

in three specific directions are given in the follow ing table.

Table 6.1 Eigenvectors for 0=0, 7t/4 and 7t/2

Direction Eigenvalue Eigenvector .

A.

(m/s)

tx h tx L

10.47 0.1726 1.0 0.0 0.5079

tt/2 8.47 1.0 -0.230 0.0 -0.1021

0.5 -0.0383 0.1621 1.0 0.0

-9.41 0.0101 1.0 0.0 -0.505

10.63 0.0384 1.0 0.3576 0.3584

6.19 1.0 -0.0747 -0.0332 -0.0049

n/4 0.70 -0.0026 0.0014 -0.9995 1.0

-9.2 0.0214 1.0 -0.3568 -0.3570

10.41 -0.0091 1.0 0.506 0.0

0.5 -0.0123 -0.002 -0.001 1.0

0 0.22 1.0 -0.0234 0.0003 0.0

-9.4 0.0295 1.0 -0.505 0.0

The computed eigenvalues and eigenvectors lead to the follow ing observations 

• This system is normally hyperbolic because four eigenvalues in a ll directions under
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the given wave conditions are real and distinct.

•  Under the assumed wave conditions, the eigenvalues o f wave and flow  characteristics 

o f the present system are almost identical to those o f shallow water wave equations. 

As a matter o f fact, they can hardly be distinguished in Figure 6.2.

• The eigenvalue o f the energy characteristics may be approximated by Cg cos(<f> -  0),

in which Cg is the plane wave group speed. As indicated in Chapter 5, a negative 

eigenvalue denotes information propagating in a direction opposite to the azimuth 

from which the eigenvalue is derived. The eigenvalues o f the energy characteristics 

in a polar coordinate system are sketched in Figure 6.3. Thus information along the 

energy characteristics can only propagate forward.

wave
direction

P

Figure 6.3 Eigenvalue o f Energy Characteristics

• The eigenvalues X+w and X^, o f the wave characteristics are identical when 

considering the entire range o f direction (0, 27t) since X+w (0)=- X ^  (0+Jt). Only one o f 

them, conventionally X+w, is used in describing wave characteristics. As shown in 

Figure 6.2, the eigenvalues o f the wave characteristics vary slightly with direction,
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which suggests information radiating out to any direction at an almost equal speed.

•  As implied in Equation (6.11), the ratios among the components o f an eigenvector 

measure the correlation o f the equations in a system. For the energy characteristics, 

the first component o f the eigenvector is much greater than three other components, 

which indicates that the evolution o f wave height is prim arily described by the wave 

energy equation. This is not surprising because the wave energy equation is an 

equation for the energy o f residual flu id  motions, while the three other equations are 

only related to the mean flow. This loose connection between the energy equation 

and the mean flow  equations is also indicated by the fact that the magnitude o f the 

first component o f the eigenvectors for wave or flow characteristics is much smaller 

than other components. In simulating mean wave parameters in one spatial 

dimension, Svendsen (1984) noticed that wave height is mainly determined from the 

energy equation while wave setup depends on the momentum equation.

As shown in Figure 6.1, the maximum eigenvalue occurs in the flow  direction, here in 

0=7t/4. Since the maximum eigenvalue physically denotes the fastest speed at which 

information could propagate from a point. This direction and the characteristics in this 

direction are o f particular interest for numerical simulation because the maximum 

eigenvalue defines the domain o f influence or dependence. The flow  direction w ill be 

termed a principal direction. In the principal direction, the eigenvalues and characteristic 

equations o f the shallow water wave equations in two spatial dimensions are the same as 

those in one spatial dimension. The details are given in Appendix C.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

6.3 Numerical Schemes

As indicated in Section 6.2, there are an infinite sets o f characteristics at any solution 

point. Hence, an infinite number o f characteristic equations can be derived. The present 

system contains four unknowns only. Thus to ensure the uniqueness o f the solutions, 

only four o f the equations are independent. In Appendix C, it is shown that only three 

sets o f characteristics are linearly independent for the shallow water wave system o f three 

equations. Physically, this can be explained by the fact that the information propagations 

in various directions are related to one another.

In this section, a numerical scheme is developed based on bi-characteristics which is 

defined as the curve o f tangency between a characteristic surface and a characteristic 

conoid. Four equations are formed through combination o f the integral continuity 

equation along a flow path and the characteristic equations integrated along five b i

characteristics. These four equations are used to solve four unknowns at a solution point.

6.3.1 M a jo r Issues

A  successful numerical scheme based on the method o f characteristics (MOC) should 

address the following issues:

• Completeness. The in fin ity  o f characteristic equations provides "freedom" o f choice 

in characteristic equations. But the characteristics in all directions should be reflected 

in the chosen characteristic equations.

•  M u ltip lic ity . The current system has three families o f characteristics. The behavior 

o f each family o f characteristics is different. Thus the characteristic equations o f each
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fam ily should be included and treated differently. For instance, the information 

propagates along wave characteristics in all directions at an almost equal speed, while 

information propagates along an energy or a flow characteristics in a predominant 

direction. Accordingly, wave characteristic equations in several directions may be 

needed, but a single energy or flow  characteristic equation in the predominant 

direction should be sufficient.

• Cross Derivatives. In two spatial dimensions, the characteristic equations include 

two partial derivatives, one along the bicharacteristics and the other along a direction 

more or less perpendicular to the bicharacteristics (Appendix D). The derivative in 

the direction other than the bi-characteristics is called a cross-derivative (Ransom 

1981). Integration o f the characteristic equations along the bi-characteristics does not 

eliminate the cross derivative. The treatment o f these cross derivatives direcdy 

affects the accuracy o f the numerical results.

• In terpo la tion . In obtaining the solutions at a node in, say, a uniform grid system, the 

characteristic equations are integrated along bi-characteristics segments over a time 

step. The starting points o f the bi-characteristics segments normally do not coincide 

w ith the grid nodes. The values at the starting points must be interpolated from the 

surrounding grid nodes. The way of interpolation has a significant impact on 

numerical stability and solutions(Townson 1974, Fowell and Ransom et al. 1986).

6.3.2 Bi-Characteristics Method

In this section, the discussion centers on the development o f four equations in H, f f ,

Ub and V b based on bi-characteristics. The four equations consist o f one energy
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characteristic equation in the direction o f wave propagation and three other equations 

formed by combination o f four wave characteristic equation and continuity equation. The 

choice o f energy bi-characteristics reflects the fact that wave energy transfers 

predominantly in the direction o f wave propagation. The flow  characteristic equation is 

not directly involved in forming the four equations because the flow  characteristics can 

be obtained by linear combination o f the wave characteristics in  two complementary 

directions, as shown in Appendix C for shallow water wave equations. The procedure is 

demonstrated by form ing the four equations at node P in a uniform grid system, as shown 

in Figure 6.4. The integration o f the energy characteristic equation along the 

bicharacteristics, say, line 6-P, in the direction o f wave propagation gives

Figure 6.4 Illustration of Bi-characteristics Scheme 

The choice o f wave bi-characteristics follows Butler(1960). For unsteady plane flow, 

Bulter (1960) proposed a numerical scheme which could eliminate all cross derivatives

y

4

X
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through combining the continuity equation w ith the characteristic equations in four 

evenly spaced directions. For the present system, this scheme w ill not eliminate all the 

cross derivatives, but it does reduce the magnitudes o f these terms significantly. So it is 

s till considered an appropriate method fo r the present system.

The characteristic equations in directions 0=0, n /2 ,7t, 3tc/2 are integrated along four 

bi-characteristic curves: 1-P, 2-P, 3-P and 4-P. The four integral equations are

t i (H p -  H i) + t \ (Tip -  rfi) + *3 ( U b ,p  -  U b i i) + i \ (V b,p -  V bfi):

dH dH dr\ , dr\ 
a; — + b ; — — + C :  — 1L +  d :  — L +

1 dx 1 dy 1 dx 1 dy

. aub au„ , avb avb
' T  Si j T  ‘ T

i= l,2 ,3 ,4 (6.13)

At

where (£\, i \ ,  £'3, £‘4) is the eigenvector o f wave characteristics in the ith direction, and a,, 

b j,.... are the coefficients o f the cross derivatives. A numerical procedure for determining 

the bi-characteristics and deriving the characteristic equations is given in Appendix E. 

Along the streamline 5-p, the continuity equation can be written as

-T ls  =
3H 3H

a r  — —  +  b e  —  h C c  — h  d C  — hdr\ . J 5t1
dx

dU b
dx

dy 

f  3 u b
+ f5 - ^ T +g5

dx

dV,

dy

dx
b + h  5 ^ -  + S5

dy

(6.14)

•At

A set o f four linearly independent equations can be extracted from the above six 

equations in the following manner.

Summing up the four equations included in (6.13) and subtracting it by two times 

the continuity equation gives
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( £ 4  ) h p +< £ 4  - 2 ) tip  +< £ 4 ) < J b.p +< X 4 ) v b.p =
i = l , 4 i = l , 4 i = l , 4 i= 1 . 4

Z 4 H i  + ( £ 4 ^  - 2 % ) +  S 4 u b.i + I 4 v b.i +
i = l , 4  i = l , 4  i= 1 . 4  i= 1 .41 = 1 .4 i= 1 .4

(6.15)

For the shallow water wave equations, the coefficients o f Hp, Ub.p and V b-P on the left side 

are equal to zero. The coefficients for the cross derivative terms are also equal to zero. 

Thus it directly gives the solution for rfp . In the present system, though the coefficients

o f Hp, Ub.p and V b.p are not zero, but their values are at least 2 orders o f magnitude smaller 

than that o f r [p . This is verified in the case studies in Section 6.5.

Subtracting the wave characteristic equation in the direction 0=0 from that in the 

direction 6=k  gives

In the shallow water wave equations, the coefficients o f Hp, r ip and V b p on the left side 

and the coefficients o f the derivatives are all zero. Equation (6.16) directly gives the 

solution for Ub.p. Similarly, subtracting the characteristic equation in the direction Q=it/2 

from that in the direction 0=3ji/2 gives
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( i f  -  et )H P + a ;  - 1*) X\p +  (*; - 1*3) ubp H t - i i ) Vb.p = 

f - u 2 -  i t H4 + /?;q2 -  ^ n ,  + ^ U bJ -  ^ U M + / ’ V W -  ?AV bA +

(a-, - a 4) ^  + (b, " b 4) ^  + (c2 - c 4) f  + (da - d 4 ) f U ( e 2 ~e4) ^  (6 -l?)
dx ‘  By dx dy dx

+ (f2 - f 4) - ^  + ( g , - g 4) ^  + (h 1 - h 4 ) - ^ + S 2 - S 4]At 
dy dx dy

In the shallow water wave equations, Equation (6.17) directly gives the solution to V b p.

In the present system, the coefficient o f Vb.F. are much greater than the coefficients o f

other unknowns on the left side, and the coefficients o f the derivatives are also very

small. Equations (6.12), and (6.15) through (6.17) are used to obtain the solutions fo r H,

r [ , Ub and Vb at the point P.

In Appendix D, details are given on determining the locations o f the starting points o f

bi-characteristics segments. The results are given here.

x 2 4 c = x - u A t ;  x, 3 = x - ( u  + C)At; x fi =x-A..Atcos<f>
’ (6.18) 

y 2 .4 , 5  = y - v A t ;  y 1 3  = y -  (v + C)At; y 6  = y -  A.eAtsm<}>

where x,y are the coordinates o f the point at which the solutions are sought, u, v, and C 

are calculated by Equations (D.4) through (D.6 ), <j) is the direction o f local wave 

propagation, and Xe is the eigenvalue o f energy characteristics in the direction <J).

A t a boundary, some bi-characteristics lie outside the computational domain. The 

above procedure may not be completely applicable. Some corresponding characteristic 

equations must be replaced by boundary conditions specified in other manner. This 

problem w ill be discussed in Section 6.4 on open boundary conditions and in case studies 

in Section 6.5.
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6 3 3  Interpolation Scheme

When integrating the characteristic equations, the values o f the dependent variables at 

the starting ends o f the bi-characteristics segments are interpolated from  the surrounding 

grid points. Webster (1968) stressed the importance o f the interpolation process. For the 

shallow water wave equations, he explored three methods o f interpolation, each based on 

nine points centered spatially at the internal points (Points P through V iii in Figure 6.5) 

and offset at boundaries. These three interpolation schemes were exact polynomial, least 

squares and orthogonal polynomial surfaces. Indications were that a least squares 

polynomial was most successful. Townson (1974) found that a first-order least square 

polynomial scheme was effective and efficient. The first-order least square polynomial 

scheme w ill also be used in this study.

1U

— 0-
vu vm

Figure 6.5 Interpolation Scheme 

The first order polynomial is a plane \jr=Ax+By+C and as such is compatible with the 

linear characteristics. Thus \|/ becomes the solution surface for H, q, Ub and Vb in turn 

w ith x and y taking values from (6.18). The coefficients A, B and C are found by solving
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the normal equations o f the least squares methods over the five grid points p, i and 

through iv  as sketched in Figure 6.5. W ith a square grid o f size As, the coefficients A, B, 

and C are obtained (Townson 1974) as follows

A  = | ( ¥ i  -  Via) /  As; B = | ( ¥ „  -  V|/iv) /  As
L (6.19)

C =  j ( V i + ¥ a + ¥ i H + V i v + V P)

At boundary points, Townson (1974) found that the interpolation scheme is not 

appropriate since it tends to distort the boundary effect. Instead the use o f surrounding 

four or three points gives more physically reasonable results.

6.3.4 Stability Criterion

Courant, Friedichs and Lewy (1928) established that the necessary condition for 

convergence o f a difference scheme fo r general hyperbolic problems is that the domain o f 

dependence o f the difference scheme must contain the domain o f dependence o f its 

differential equation. The domain o f dependence for a point is determined by the 

backward-in-time characteristic cone, as shown in Figure 6.6.

Domain o f 
Influence

P(x.y.t)

Domain o f 
Dependence

Figure 6. Domain o f Influence and Dependence
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In two spatial dimensions, the CFL stability condition is (Potters 1973)

C A /  1

^ - < 7 ?  ( 6 - 2 0 )

where Cmax is the maximum speed which could occur over the entire computational 

domain and throughout the entire simulation. This speed corresponds to the maximum 

eigenvalue. Equation(6.20) provides an estimate o f a time step for a given spatial step.

6.4 Open Boundary Conditions

As in the interior domain, four constraints are needed for solving the four unknowns

at a boundary. The bi-characteristics scheme developed in Section 6.3.2 is not applicable

at the boundary because some bi-characteristics lie outside the computational domain.

Extra boundary conditions must be specified to supplement to characteristic equations o f

outgoing characteristics. The fo llow ing discussion is based on general wave incidence at

an angle 9 w ith the x-axis, as shown in Figure 6.7.

y

/

Incident wave ^
direction Inflow Boundary

Figure 6.7 Sketch o f Open Boundaries 

By far there are no exact non-reflecting boundary conditions for a hyperbolic
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nonlinear system in two spatial dimensions. In the study o f the characteristics o f the 

shallow water wave equations, it is found that the characteristics along a flow  path in a 

two dimensional space behave exactly the same as in a one dimension space. 

Heuristically, the Hedstrom's open boundary conditions introduced in Section 5.3 may 

s till be valid for two spatial dimensional problems as long as the open boundary 

conditions are applied in the flow direction.

The four eigen-values in the flow direction at a boundary point are ranked as

I f  there are M  incoming characteristics, then 4-M  outgoing characteristic equations may 

be used to form the boundary conditions. M extra boundary conditions should be 

specified to supplement to the outgoing characteristic equations. The extra conditions 

may then use the Hedstrom’s approximate boundary conditions in the flow  direction 

(Section 5.3.1), i.e.

It should be reminded that in a two dimensional space, information may propagate in 

or out o f the domain at any angle. The open boundary conditions so specified in the flow 

direction do not guarantee non-reflection at the open boundary.

Also care must be exercised in choosing the characteristic equations to avoid 

redundancy. For example, i f  wave height is given at a boundary, then the energy 

characteristic equation should not be used.

X, < X 2 < X 3 < X 4 (6.21)

(6.22)
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6.5 Case Studies

In this section, three case studies are performed. These three cases are: evolution o f 

an in itia l water mound over a fla t bottom, the advance o f normally incident waves over a

case, there is no incident short-period waves. In the second and third cases, the direction 

o f wave propagation is known by physical intuition. The evaluation o f wave direction is 

not required in either o f the three cases. These case studies are designed to test the 

proposed numerical scheme and open boundary conditions.

Case I Evolution Of An Initial Water Mound

An in itia l conical water mound is located in the center o f a square domain as shown in 

Figure 6.8. The computational domain is 200 m by 200 m w ith a uniform  water depth o f 

10 m. The shape o f the in itia l water mound is

flat bottom and the advance o f obliquely incident waves over a fla t bottom. In the first

for r < 50m
(6.23)

0 for r > 50m

where rj is the displacement from mean water surface and r is the distance from the center

“ y

X

Figure 6.8 Sketch o f the Computational Domain For Case I
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o f the domain (x=100, y=l00). A  uniform grid is used w ith Ax=10 m and Ay=10 m. For 

the given grid spacing, a time step may be estimated using Equation (6.20); The fina lly  

chosen time step is 0.5 second.

A ll four boundaries are outflow boundaries. Open boundary conditions are specified 

according to the characteristics in a flow  direction at the boundary. The flow  direction in 

this case is along the radial line from the center o f the domain to a point in question, as 

shown in Figure 6.8. The three boundary conditions are comprised by one outgoing wave 

characteristic equation, the Hedstrom boundary condition along the incoming 

characteristics, and Equation (6.16) for lower and upper boundaries or Equation (6.17) for 

le ft or right boundaries. Flow characteristics or the corresponding characteristic 

equations are not adopted because the flow direction changes w ith time; the flow  

characteristics may be an inflow  characteristics at one time, and becomes an outflow  

characteristics at other time.

The computed water surface profiles and velocity fields at six different time levels are 

shown in Figures 6.9 and 6.10. Figure 6.9 shows the water surface oscillating around the 

mean water surface while propagating out o f the domain. The water surface profile 

actually consists o f a spectrum o f wave modes. Spectral analysis is necessary in order to 

compute wave propagation speeds.

There is no appreciable reflection at all open boundaries. Neither is spurious 

reflection suggested by the flow  fields shown in Figure 6.10. A t the simulation time o f 

about 20 seconds, the water surface has returned to quiescence.
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Figure 6.9 Evolution of W ater Surface For Case I
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Case II Advance Of Normally Incident Waves

Waves are assumed to propagate into a square domain along the y axis, as shown in 

Figure 6.11. The computational domain has a uniform water depth o f 10 m. The wave 

height and wave period are 1 m and 10 seconds, respectively. A  uniform  square grid w ith 

Ax=l0 m and Ay=10 m is used. Corresponding to the grid spacing, a time step may be 

estimated using Equation (6.20) w ith the maximum eigenvalue which is the eigenvalue o f

t y

Left
boundary

Upper boundary

200m

• LoWe^&ounjary

Right
boundary

B
-+ x

Wave Advance

Figure 6.11 Sketch o f Computational Domain For Case II  

wave characteristics in the direction o f wave propagation. A fter some numerical 

experiments, the fina lly adopted time step is 0.5 second w ith a Courant-Friedrichs-Lewy 

number equal to 0.7.

In itia lly , the computational domain is quiescent. The wave height is suddenly 

imposed at the lower boundary at the beginning o f simulation and remains constant 

thereafter.

In this case, the lower boundary AB is an inflow boundary and the upper boundary 

CD is an outflow boundary. A t the inflow  boundary AB, at least one extra boundary

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

condition is required since there is only one outgoing characteristics for subcritical flow. 

Wave height is given at this boundary, so that only three boundary conditions are needed. 

The three boundary conditions are: outgoing wave characteristic equation in  the direction 

0=7t/2, Equation (6.22) along the incoming wave characteristics in the same direction, and 

Ub=0 which is obvious from physical intuition.

A t the outflow boundary CD, four constraints must be specified. For subcritical flow, 

there are at least one incoming characteristics, and extra boundary conditions have to be 

specified. The characteristics from the incident wave conditions show that there are at 

least two outgoing characteristics, including one wave characteristics and one energy 

characteristics. Thus the characteristic equations o f the outgoing wave characteristics and 

energy characteristics must be used. Ub=0 is Also used for the same reason given above. 

The fourth constraint is the Hedstrom approximate boundary condition (Equation 6.22) 

along the incoming wave characteristics.

A t the left and right boundaries, the four boundary conditions are: the com patibility 

equation o f energy characteristics in the direction o f wave propagation( i.e. 0=rt/2), Ub=0, 

Equation(6.17) and Equation (6.22) along the incoming wave characteristics in direction 

0=0 for the left boundary or in the direction 0=7t fo r the right boundary.

The computed wave height surface, wave setup and mean flow under the trough at six 

time levels are shown in Figures (6.12) through (6.14). The general behavior is sim ilar to 

that expected in one spatial dimension. Again, the solutions at all boundaries show no 

signs o f spurious reflection. The proposed open boundary conditions and numerical 

scheme have been shown to be appropriate.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

t=5 s t=10 s

E 1

*5 0.5
©
>
CO£

200

X(m)
200 0 Y(m)

;n<:

X(m)
200 0

t=15 s t=20 s

200

X(m)
200 0

CD 0.5

X(m)

t=25 s t=40 s

Figure 6.12 Evolution Of W ave Height Profile For Case II
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Case m  Propagation of Obliquely Incident Waves

To test the performance o f the numerical scheme and open boundary conditions for 

oblique wave propagation, waves are assumed to advance into a square domain from the 

le ft lower comer at an angle o f 45° w ith the x-axis, as shown in Figure 6.15. The 

computational domain has a uniform water depth o f 10m. The incident waves have a 

period o f 12 seconds and a height o f 0.5 m. A  uniform grid w ith Ax=Ay=l0m  is used, 

coupling a time step o f 0.5 second.

y

200 m

AS

Wave Generation Line

Figure 6-15 Sketch o f Computational Domain for Case III 

O f the four boundaries, AB and DA are inflow  boundaries where the wave height is 

given, and BC and CD are outflow boundaries where all four boundary conditions need 

to be specified. The boundary conditions for the inflow  and outflow boundaries require 

locally specific consideration.

To impose wave height at the inflow  boundaries AB and DA, draw a wave crest line 

through A, as shown in Figure 6.15. This line represents a wave crest at the instant 

waves reach point A. Since the distance from the boundary to the wave generation line
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varies w ith the grid point, the wave height varies w ith the grid points along a boundary. 

In this case, the wave forcing is gradually imposed at the boundaries according to the 

follow ing function

V'-w v
(6.24)

where Hb(t) is the wave height at a boundary point at time t, H; is the incident wave 

height at the line o f wave generation, As is the distance from the boundary point to the 

wave crest line, and is the eigenvalue o f energy characteristics which physically 

represents the speed o f wave energy transfer. The exponential function smoothes the 

transition from the boundary to the interior domain because the solutions in the interior 

domain always include numerical diffusion.

Since wave height is given at the in flow  boundaries, only three boundary conditions 

are required. Physically, the velocity vector should be in the direction o f wave incidence, 

i.e., Ub=Vb. The outgoing wave characteristic equation in the direction 0=71/4 serves as a 

boundary condition. The third boundary condition is zero gradient o f wave setup along 

the wave Crestline, in the direction 0=37t/4. For the uniform square grid w ith an incident 

wave angle o f tc/4, this boundary condition is expressed as

The flow  characteristics is not used in the formation o f boundary conditions because the 

flow velocity is very small and flow  direction changes w ith time.

A t the outflow boundaries BC and CD, the constraint Ub=Vb remains valid. Three 

additional boundary conditions are comprised by the outgoing wave characteristic

T|u = Tlj., 2 at the lower boubdary 

rf, j = rf2 at the left boubdary
(6.25)
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equations and the energy characteristic equation both in the direction o f wave incidence, 

i.e., 0=7t/4, and the Hedstrom approximate boundary condition (Equation 6.22) along the 

incoming wave characteristics in the same direction.

The computed wave height surface, mean water surface and mean flow  below the 

trough at six time levels are shown in Figure (6.16) through (6.18), respectively. A t time 

50 seconds (the last figure), waves have passed through the computational domain, so 

that wave height is uniform  over the entire domain, the mean water surface returns to 

undisturbed position and the mean flow current is triv ia l, as expected. The solutions at 

the inflow  and outflow boundaries are smooth at a ll six time levels, demonstrating again 

that the imposed boundary conditions do not cause any appreciable numerical reflection 

at the boundaries.

To further illustrate the wave propagation, the wave height profiles along the diagonal 

line AC at 8 different time levels are plotted in Figure (6.19a). To estimate the 

propagation speed, a straight-line is drawn through wave height 0.25 m. The 

propagation speed is estimated by dividing the distance by the time interval. The 

estimated speed o f energy transfer is 8.25 m/s. The wave group speed estimated from 

Fourier approximation wave theory is 8.34 m/s, which about 1% greater than the 

numerical speed o f wave energy transfer. Shown in Figure (6.19b) are the wave height 

profiles along the right open boundary BC at 8 different time levels. Prior to t=15 sec., 

waves have not yet reached the boundary, so they not labeled. A t t=45 sec., the wave 

field has almost reached the steady state.
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6.6 Wave Direction

In two spatial dimensions, the direction o f wave propagation changes in response to 

variations in water depth and in the flow  field. The local wave fie ld  can be characterized 

by wave height and wave direction. Under the assumption that the kinematics in the 

surface layer is dominated by wave motion, the velocity vector in the surface layer (from  

wave trough to crest) is in the same direction o f the wave propagation. The mean 

velocity vector in the bottom layer (from sea bed to the trough) is generally not in the 

wave propagation direction, as corroborated by wave-generated longshore currents. In 

this section, two approaches to the modeling o f wave direction w ill be introduced.

(a) M ild  Slope Model

I f  the current is weak, wave direction can be estimated from the coupled eikonal and 

transport equations that are equivalent to the mild-slope equation (Massel 1989).

where S is the phase function, k is the wave number, C is the wave phase speed, Cg is the 

group speed, a is the wave amplitude, and Vh is a horizontal gradient operator. The term 

w ith the spatial gradient o f wave amplitude describes wave diffraction. VhS defines the 

local wave direction.

W ithout diffraction, Equation (6.26) reduces to refraction approximation

(6.26)

V h(CCga2V hS) = 0 (6.27)

V x  k = 0 (6-28)
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Equations (6.26) and (6.27) may be used to solve the two components o f VhS. Since the 

present model uses wave height instead o f wave amplitude, fo r convenience, the wave 

amplitude is replaced by wave height The phase speed C and group speed Cg may be 

estimated from Fourier approximation wave theory, like a ll other closure variables.

(b) Vertical Mass Flux Model

Since the velocity vector in the surface layer is assumed to be in the same direction o f 

wave propagation, this approach centers on solving the velocity components in the 

surface layer. The continuity equation in the surface layer is

M ) + M ) = 1 i  ( 6 . 2 9 )

3x dy

where qt is the vertical mass flux per unit area across the trough. The angle between the 

wave propagation direction w ith the x-axis, 0, can be obtained

0 = atan-1(-^ -) (6.30)
U s '

Equation (6.29) includes three unknowns in Us, V s and q,. Besides Equation (6.29), 

two more constraints must be specified to solve the three unknowns. The resultant 

velocity in the surface layer may be obtained using the solution surface. I f  the mass flux 

across the trough can be estimated, then the system is closed.

To find out what factors qu depends on, the mass transport in the surface layer in one 

spatial dimension is studied first. In one spatial dimension, Equation (6.29) can be 

approximated by

31 3 ,E , .

<63I)
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where I is the wave-averaged mass transport, E is the wave energy, and C is the wave 

phase speed. Substituting E=-~ pg H 2 into Equation (6.31) gives
O

Pg d H 2 PgH1 3c
q‘ 8C dx 8C! dx ( ' '

where H is the wave height, p the water density and g the gravitational acceleration. In

g
deep water, C = -— T, then Equation (6.32) becomes 

2k

q, _  g d H 2 co d H 2

p 8 C dx 8 dx { }

where 0) is the wave angular frequency. In shallow water, C =Jgh  and Equation (6.32) 

becomes

q, 1 f iT a f f ’ H 2 dh . V I  d H 1 , . ,3 h .  
p ~  8 \  h dx h dx 8hy' dx d x ] ( )

For broken waves, the water depth may be related to wave height by h=H/y, where y is a

breaking index. Equation (6.34) thus becomes

ch = V g y /H  (6.35)
p 16 9x

Equation (6.32) can be generalized in form

q , = P ~  (6.36)

where (3 is a constant w ith the dimension o f time. As indicated in Equations (6.33) 

through (6.35), (3 depends on water depth and wave characteristics. Dimensional analysis 

gives that P= aco, where co is wave angular frequency, and a  is a dimensionless constant.

The coefficient a  can be calibrated using the numerical results for steady state wave
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propagation at Egmond Beach (Thieke and Sobey 1990). A  plot o f the mass flux versus 

the gradient o f squared wave height is shown in the fo llow ing Figure.

0.005

0.000 -•m
1
0s0
§ -0.005

S.cOk3O•0.010
o>
0*
0

§ -0.015 --o
0K3e0
|  -0.033 -■

-0.025
-0.006 0.0020.000

dH /dx

Figure 6.20. The relationship between mass transfer across wave trough 
and energy gradient in the direction o f wave propagation

From this figure, a  is approximately equal to 2.08. A  difference form o f Equation (6.29) 

is written as

(H U ,),.; - (H U ,) , . ,  . (H V ,).j - (H V 5)i j_| _

Ax Ay
(6.37)

where qt is evaluated from the mean value o f the wave heights at the four grid points and 

the gradient o f wave height in the wave propagation direction, i.e.

H i.j + H .-i.j + H iH  + H i.l j_l 3H
q = aco- 4 as

The directional derivative in the direction o f wave propagation is

(6.38)
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The derivative o f wave height in the x and y directions can be estimated by using the 

backward difference w ith the wave height at the previous time step.

6.7 Wave Focusing By A  Submerged Shoal

In this section, the model is applied to simulate wave focusing by a submerged shoal

under the experimental conditions o f Berkhoff et al. (1982). In the model test, normally

by a wave paddle at the deep end o f the wave tank, and are dissipated by breaking on a 

gravel beach at the shallow end. Thus wave reflection is not included in the wave 

transformation process. The experimental topography has an elliptic shoal resting on a 

plane sloping bottom w ith a slope o f 1:50, as shown in Figure 6.21. The plane slope rises 

from a region o f constant 0.45 m depth, and the entire slope is turned at an angle o f 20° to 

the paddle. The slope is described by

where (x',y') is a coordinate system with x' axis parallel the contour, as sketched in Figure 

6.22. The boundary o f the elliptic shoal is defined by

incident waves are generated at a period o f 1 second and with an amplitude o f 0.0232 m

0 .4 5 - 0.02(5.82 + / )  m

m Y < -5.82m 

y  > -5.82m
(6.40)

(6.41)

and the depth in the shoal region is modified according to

(6.42)
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where hsiope is the water depth given by Equation (6.40). The resultant depth at the center 

o f the e llip tical shoal is 0.1332 tn.

Measurements were taken at 8 transects behind the shoal (Berkhoff et al. 1982). 

Arrays o f resistance type wave gages, spaced 0.5 m apart, recorded time series o f water 

surface elevations.

D

Shoal

0= 20'

A

wave generation line

Figure 6.22 Computation Domain

The computational domain is a 20mx20m square domain, as shown in Figure 6.21. The 

offshore boundary o f the computational domain is so chosen that water depth is constant 

along x=0. A  uniform square grid w ith Ax=Ay =0.5 m is used. The time step o f 0.05s is 

determined from numerical experiments. The grid lines are so arranged that the grid rows 

and columns coincide w ith measurement transects. The interior o f the domain is 

simulated by the numerical algorithm developed in Section 6.3. The wave direction is 

modeled using Equation (6.28) since in this refraction dominates in the wave 

transformation process.

O f the four boundaries, AB is an inflow boundary where the wave heights are given, 

CD is an outflow boundary, and BC and DA are lateral open boundaries. A t the inflow
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boundary AB, a constant wave height H=0.0464 m is imposed at each boundary point. 

Three additional constraints are the outgoing wave characteristic equation in the direction 

0=jt/2, Equation (6.16) which is derived by combining the wave characteristic equations 

in the directions 0=0 and 0=7t, and the Hedstrom approximate boundary condition o f 

incoming wave characteristics in the direction 0=7t/2.

A t the outgoing boundary CD, four boundary conditions have to be specified. The 

four boundary conditions are the outgoing wave characteristic equation, energy 

characteristic equation in the direction o f the local wave number vector, Equation (6.16) 

and the Hedstrom extra condition along the incoming wave characteristics in the local 

wave propagation direction.

A t the lateral boundaries BC and DA, four boundary conditions are specified in the 

same manner as for the outflow boundary, except that Equation (6.17) is used instead o f 

Equation (6.16).

The computed wave height surfaces at six times are shown in  Figure (6.23). From 

these figures, waves focusing is very obvious waves pass over the shoal. Wave field 

approaches steady state in about 40 seconds since the entrance at Boundary AB. Detailed 

comparison between numerical results and experimental data w ill be incorporated in the 

future study.
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7 MODELING WAVE REFLECTION AND SEDIMENT TRANSPORT

In this chapter, discussions center on the conceptual aspects o f the use o f phase- 

averaged models for simulating wave reflection and sediment transport.

7.1 Modeling of Wave Reflection

Wave reflection is an important wave transformation process in coastal regions. It 

may occur when the wave propagation is hindered by structures such as breakwaters or 

simply by steep beach.

As outlined in Chapter 4, the use o f progressive wave theory in the apparent stress 

closure specifically excludes wave reflection. To consider wave reflection, a reflection 

coefficient (the ratio o f incident wave energy to reflected wave energy) should be used. 

Unfortunately, the reflection coefficient is unknown in most situations. The closure o f 

wave apparent stresses becomes more complicated because the apparent stresses depend 

on the reflection coefficient. Given a reflection coefficient, a set o f solution surfaces 

sim ilar to those in Chapter 4 may be established using partial standing wave theory, i.e. 

such as the fourth order theory o f Goda (1967). In this case, the solution surfaces would 

be defined by three parameters: dimensionless water depth, normalized wave height, and 

reflection coefficient. Since the reflection coefficient itse lf is unknown, an iteration 

procedure w ill be inevitably employed.

Nonlinearity significantly complicates the definition o f the reflection coefficient 

because the wave motion includes not only progressive wave modes and reflective 

modes, also a third component-interactive mode (or wave-wave interaction) between the 

progressive waves and reflected waves.
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An alternative approach is to compute wave fie ld separately. Wave fie ld (wave 

height and direction) may be computed from the linear mild-slope equations (Berkhoff 

1972, Dingemans 1985) or from the nonlinear Boussinesq equations (Peregrine 1967). 

Once the wave field is known, the mean-flow mass and momentum equations may be 

solved for wave setup and mean flow  currents under the trough. The trade-off in this 

approach is that the wave-current interaction is absent in each computation cycle. This 

can be partially remedied by an iteration procedure.

Any one o f these approaches would demand much more computing effort than does 

the case without wave reflection, the iteration procedure significantly compromising the 

advantage o f phase-averaged models. Application o f phase-averaged models must be 

based on a particular problem at hand.

7.2 Sediment Transport M odeling

Sediment transport process may be divided into three stages (Van der Velden 1989): 

suspension, horizontal displacement and re-sedimentation. Each stage depends on water 

movement and sediment characteristics. Waves predominantly loosen material on the 

bottom and stir it up, while currents mainly transport material to another place. The 

amount o f sediment transport is largely determined by waves, while the transport velocity 

depends on current. The wave-driven currents typically exist as undenow currents for 

shore-normal wave propagation, rip currents resulting from edge waves, and longshore 

currents owing to the spatial gradients o f wave apparent stresses.

The combination o f waves and currents can intensify sediment transport (van der 

Velden 1989). For currents only, the average transport velocity is high but the amount o f
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sediment is low. For waves only, the resulting transport velocity is small but the amount 

o f the suspended sediment is large.

Nonlinearity plays a significant role in coastal sediment transport. I f  waves are 

symmetrical, there w ill hardly be any net transport, the sediment being moved backwards 

and forwards over the same distance. Wave profiles in shallow water are peaked around 

the wave crest and flat near the wave trough. Since the shear stress is proportional to the 

square o f the velocity, a peaked crest and fla t trough may determine the direction o f the 

wave-averaged shear stresses. Hence the direction o f cross-shore sediment transport 

critically depends on wave nonlinearity (Thieke 1988). Sediment could be transported in 

a direction opposite to the wave propagation. Clearly, use o f nonlinear wave theory is 

preferable in sediment transport modeling.

Phase-averaged models may find many applications in simulating coastal processes 

because the mean flow parameters are essential to net sediment transport, which in turn is 

responsible for seasonal or long-term coastal evolution. It should be fu lly  recognized, 

however, that the initiation o f sediment motion from the sea bed is mainly due to the 

wave motion which is generally much greater than the mean flow  current in magnitude. 

Other factors including sediment characteristics and bottom boundary layer are also very 

important to sediment suspension or the amount o f sediment available fo r transport. The 

prediction o f sediment transport can be divided into two parts: bed load and suspended 

load. The bed load is the transport o f sediment which rolls or jumps along the bottom 

within a thin layer above the bottom. In contrast, suspended transport is only affected by 

the friction o f the grains themselves in water. The difference between the bed load 

transport and the suspended sediment transport is often not clear. The computation o f
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sediment transport by far remains largely empirical.

B ijker (1971) developed a bedload transport formula fo r current and wave combined 

by modifying the transport formula for currents and for waves. The key issue is the time- 

averaged bottom shear stress. In integral models, the magnitude o f the particle orbital 

velocity near the bed due to wave motion may be evaluated using the closure procedure 

described in Chapter 4.

Bed load is confined to a thin layer. The thickness o f the layer should be in the same 

order o f the boundary layer thickness. Nielsen (1985) suggested that the boundary layer 

thickness in a wave-dominated environment be o f order

5 = i f „ a „  (7.1)

where f<n is a friction factor and a<, is the maximum water particle displacement at the 

bottom. For typical wind waves, the boundary thickness is thin in comparison w ith water 

depth.

The suspended sediment transport can be computed by integrating the product o f 

sediment concentration and mean flow  velocity from the top o f the bed load layer to the 

water surface. To carry out the integration, the vertical distribution o f both velocity and 

the concentration must be known.

The vertical distribution o f the sediment concentration depends on diffusion 

coefficient and sediment characteristics. Normally, the sediment concentration is not 

uniform over the water depth due to gravity and the variation o f the diffusion coefficient, 

the distribution o f sediment concentration may be formulated by (van der Velden 1989)
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c(z) = Ca exp(-w  j  (7.2)
i e.(z)

where Ca is a reference concentration at level z=a, w is the fa ll velocity o f the sediment 

and Ez the diffusion coefficient. The reference level is at the top o f the bed-load layer and 

the reference concentration is normally estimated by dividing the bed load transport by 

the thickness o f the bed load layer.

In the present integral model, it  is reasonable to assume that the suspended sediment 

transport takes place only in the bottom layer (from the sea bed to wave trough) because 

the sediment concentration near the water surface is normally much less than that in the 

bottom layer. Since the present model assumes a uniform flow velocity in the bottom 

layer, the integration process is reduced to the integration o f the sediment concentration 

alone.

In  summary, sediment transport modeling can be integrated with present mean flow 

model.
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8. CONCLUSIONS

In this study, a wave-averaged depth-integrated wave transformation model was 

developed. This model represents the major physical phenomena in the coastal wave 

evolution, including wave shoaling, refraction, diffraction, wave-current interaction and 

surf beat. General approaches for using phase-averaged models in the simulation o f wave 

reflection and sediment transport have also been discussed. Though these discussions 

were conceptual, they showed promise in applying the integral model in coastal 

engineering practice.

W ith the focus on mean wave parameters, wave height, wave setup and wave-driven 

currents, the wave apparent stresses were closed using relationships from high-order 

Fourier approximation wave theory. Numerical solutions adopted the method o f 

characteristics. The information propagation in the system was fu lly  revealed by the 

characteristics o f the system, which were especially beneficial in the construction o f open 

boundary conditions. The importance o f appropriate open boundary conditions can not 

be over emphasized because spurious numerical reflection at the boundary w ill 

significantly distort the transient behavior o f system. Case studies both in one spatial 

dimension and two spatial dimensions demonstrated the excellent performances o f the 

numerical schemes and the open boundary conditions. Nearly non-reflecting conditions 

were achieved in every case.

It was clearly shown in this study that transient dynamics may be important for 

coastal evolution. The wave-driven current and mean water surface variation are 

significantly greater than the respective steady state values. Since the wave conditions in 

deep water are rarely invariant, the simulation o f transient behavior is a significant feature
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of this model.

In principle, the mean flow  integral model developed here is valid throughout the 

entire coastal area, including the surf zone. The wave transformation and mean flow  

problem addressed here is very complex, and many complicating effects have been 

ignored to make the problem tractable. The main sim plification is the use o f a specific 

wave theory for wave-apparent-stress closure. Specifically, the use o f the Fourier 

approximation wave theory in the present model excludes wave reflection. However, the 

computational framework o f the integral model is independent o f the closure hypotheses, 

and the present closure can be readily updated or replaced. The assumption o f a 

horizontal bottom in the Fourier approximation wave theory may also influence the 

numerical solutions when applying the model for wave propagation over an uneven 

bathymetry.

The present model focuses on the large picture o f wave transformation in coastal 

regions. On the basis o f this model, addition o f local physics can further enpower the 

integral model. The local dynamics are significant in the surf zone. The mass and 

momentum fluxes due to wave breaking needs additional attention. But these phenomena 

are far from fu lly  understood, and their quantification is insecure. These terms can be 

easily incorporated into the mathematical model once they can be reasonably well 

formulated in future.

The limitations o f this model aside, it is still a valuable frame work for simulating the 

evolution o f mean wave parameters. In addition, the developed numerical scheme and 

the approaches for dealing w ith open boundary conditions can be used for a quasi-linear 

hyperbolic system o f any order.

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

BIBLIOGRAPHY

Bagnold, R. A., 1940. Beach Formation By Waves; Some Model Experiments In a Wave 
Tank. J. Inst. Civ. Eng., 15: 27-52.

Battjes, J.A., 1974. Surf Similarity. Proc. 14th Confc. Coastal Eng., 1,466-479.

Battjes, J.A. and Janssen, J.P.F.M, 1978. Energy Loss And Setup Due To Breaking O f 
Random Waves. Proc. 16th Confc. Coastal Eng., Hamburg, ASCE, 1,569-587.

Battjes, J.A. and Stive, M.J.F., 1985. Calibration And Verification O f A Dissipation Model 
For Random Breaking Waves. Journal o f Geophysical Research, 90,9159-9167.

Battjes, J.A., Sobey, R.J. and Stive, M.J.F., 1990. Nearshore Circulation. Chapter 13 , 
pp.467-487.

Battjes J.A., 1994. Shallow Water Wave Modeling. International Symposium: Waves- 
Physical and Numerical Modeling, pp. 1-23

Berkhoff, J.C.W., 1972. Computation O f Combined Refraction-Diffraction. Proc. 13th 
Conf. Coastal Eng., ASCE, Vancouver.

Berkhoff, J.C.W., Booij, N. and Radder, A.C., 1982. Verification o f Numerical Wave 
Propagation Models Fo r Simple Harmonic Linear Water Waves. Coastal Eng., 6: 255-279.

B ijker, E.W., 1971 Longshore Transport Computations. Journal o f Waterways, Harbors 
and Coastal Engineering Division, ASCE, Vol.97, WW4, pp 687-701.

Bode, L. and Sobey, R.J., 1984. In itia l Transient In Long Wave Computations. Journal 
o f Hydraulic Engineering, V o l.10, No. 10, pp.1371-1397.

Book, D.L., Boris, J.P. and Hain, K., 1975 Flux-Corrected Transport I I :  Generalization 
o f The Method. Journal o f Computational Physics, 18, pp. 248-283.

Bradshaw, P., 1972. The Understanding and Prediction o f  Turbulent Flow. Aeronautical 
Journal, 76,403-418.

Bretherton, F.P. and Garrett, C.J.R., 1968. Wave Trains In Inhomogeneous Moving 
Media , Proc. Royal Soc. London, Series A302, pp.529-554.

Bulter, D.S., 1960. The Numerical Solution o f Hyperbolic Systems o f Partia l D ifferentia l 
Equations in Three Independent Variables. Proc. Royal Soc.(London), 255A, pp.232-252

Chapman, David., 1985 Numerical Treatment o f  Cross-Shelf Open Boundaries In a 
Barotropic Coastal Ocean Model. Journal of Physical Oceanography, pp. 1060-1075.

155

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Courant, R., Friedrichs, K.O., and Lewy, H., 1928. Uber Die Partellen
Differentialgleichungen der Mathematischen Physik. Math Ann. Vol. 100, pp.32-74

Daubert, A. and Graffe, M.O., 1967. Some Aspects o f  Near-Horizontal Unsteady Flow  
and Their Application to Estuaries. Communication Presentee au Comite Technique de 
la Societe Hydrotechnique de France, Juin.

De Vriend, H.J. and Stive, M.J.F., 1987. Modeling O f Nearshore Currents. Coastal Eng., 
11:565-601.

Dean, R.G. and Dalrymple, R.A., 1984. Water Waves Mechanics For Engineers and 
Scientists. Prince-Hall, Englewood C liffs, N.J.

Deleaney, R.A. and Kavangh, P., 1976. Transonic Flow Analysis in Axial-Flow  
Turbomachinery Cascades by a Time-Dependent method o f  Characteristics. Journal o f 
Engineering for Power, July, pp.356-364.

Derks, H. and Stive, M.J.F., 1984. Field Investigation in the TOW Study Programme fo r  
Coastal Sediment Transport in the Netherlands: . Proc. 19th Confc. Coastal Eng., 
Houston, Volume U, Chapter 123, pp. 1830-1845.

Dingemans, M.W ., 1985. Evaluation o f  Two-Dimensional Horizontal Wave Propagation 
Models. D elft Hydraulics Lab. Rep. W301, part5, 117 pp.

Dingemans, M.W., 1987. Verification O f Numerical Wave Propagation Models With 
Laboratory Measurements. D elft Hydraulics.

Engquist B. and Majda A., 1977. Absorbing Boundary Conditions fo r  the Numerical 
Simulation o f  Waves. Mathematics o f Computation, 31: 629-651.

Fenton, J.D., 1988. Nonlinear Wave Theories, pp.3-25.

Fox, G. Douglas, 1970. Forced Plume in a Stratified Fluid. Journal o f Geophysical 
Research. V o l.75,33:6818-6831.

Garcia, R. and Kahawita, R., 1986. Numerical Solution o f  the St. Venant Equations with 
the MacCORMACK Finite-Dijference Scheme. International Journal for Numerical 
Methods in Fluids, Vol.6, pp. 259-274

Greenwood, B. and Osborne, P.D., 1990. Vertical and Horizontal Structure in Cross
shore Flows: An Example o f Undertow and Wave Setup On a Barred Beach. Coastal 
Eng., 14: 543-580.

Hamm, L., Madsen, Per A., and Peregrine, D. H., 1993. Wave Transformation in the 
Nearshore Zone: A Review. Coastal Eng., 21: 5-39.

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Harper B .A . and Sobey, R.J., 1983. Open Boundary Conditions For Open Coast 
Hurricane Storm Surge. Coastal Eng., 7: 41-60.

Hedstrom, G.W., 1979. Non-reflecting Boundary Conditions f o r  Nonlinear Hyperbolic 
Systems. Computational Physics, Vol.30, pp .222-237.

Hirsch, Charles, 1986. Numerical Computation o f  Internal and External Flows, Volume 
I :  Fundamentals o f Numerical Discretization. John W iley &  Sons.

Holt, M., 1964. Recent Contribution to the Method o f  Characteristics fo r  Three- 
Dimensional Problems in Gas Dynamics. Report FM-74-2, College o f Engineering, 
University o f California, Berkeley.

Horikawa, K., 1989. Nearshore Dynamics and Coastal Processes. University o f Tokyo 
Press.

Hoskin, N.E., 1964. Solution by Characteristics o f  the Equations o f One-Dimensional 
Unsteady Flow. Methods in Computational Physics, edited by B. Alder, Vol.3, pp.265- 
293

Jonsson, I.G., 1966. Wave Boundary Layers And Friction Factors. Proceedings 10th 
Conference Coastal Engineering, 1: 127-144.

Katopodes, N. and Strelkoff, T., 1979. Two Dimensional Shallow Water-Wave Models. 
Journal o f Engineering Mechanics, Vol.105, No. EM2. pp. 317-334.

Larsen J. and Henry, D., 1983. Open Boundaries in Short Wave Simulation- A New 
Approach. Coastal Eng., 7: 285-297.

Lax, P.D., 1958. Differential Equations, Difference Equations and m atrix Theory. 
Commun. Pure Appl. Math. Vol. 11, pp. 175-194

Le Mehaute, B „ 1962. On Non-Saturated Breakers And The Wave Run-Up. Proc. 8th 
Conf. Coastal Eng. 1, 77-92.

Longuet-Higgins, M.S. and Stewart, R.W., 1964. Radiation Stress in Water Waves; a 
Physical Discussion, with Applications. Deep Sea Research, 11,529-562.

Longuet-Higgins, M.S., 1964. Breaking Waves -In Deep Or Shallow Water. Proceedings, 
Tenth Symposium on Naval Hydrodynamics, pp.597-605.

Massel, Stanislaw R „ 1989. Hydrodynamics O f Coastal Zones. Elsevier Oceanography 
Series, 48.

Mei, C. C., 1983. The Applied Dynamics o f  Ocean Surface Waves. W iley, New York.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Mei, C.C., 1985. Resonant Reflection o f Surface Waves by periodic Sandbars. Journal o f 
Fluid Mechanics., 152; 315-335.

Miche, R., 1951. Le pouvoir reflechissant des ouvrages maritime exposes a I'action de la 
houle, Annales Ponts et Chaussees, 12 l e Annee, pp. 285-319.

Munk, W .H., 1949. S urf Beats. Trans. Am. Geophys. Union, 30: 849-854.

Nadaoka, K . and Kondoh, T., 1982. Laboratory Measurements o f  Velocity Field 
Structure in The S u rf Zone By LDV. Coastal Engineering in Japan, 25, 125-145.

Nielsen, P., 1985. A Short Manual o f Coastal Bottom Boundary Layers and Sediment 
Transport. Public Works Dept., N.S. Wales, Coastal Eng. Branch, TM  85, pp.1-56.

O'Brien, M .P., 1931. A Report on Sand Movement and Beach Erosion A long the Pacific 
Coast o f  the United States. Beach Erosion Board.

Osher, S. and Solomon, F., 1982. Upwind Schemes fo r  Hyperbolic Systems o f 
Conservation Laws. Mathematics o f Computation, 38: 339-377.

Peregrine, D.H., 1967. Long Waves on a Beach. Jour. Fluid Mech., 27: 815-827.

Potters, D., 1973. Computational Physics. John W iley &  Sons.

Phillips, O .M ., 1977. Dynamics o f  the Upper Ocean. 2nd Edition, Cambridge University 
Press, Cambridge.

Ransom, V .H ., 1970. A Second-Order Numerical Method o f  Characteristics fo r  Three 
Dimensional Supersonic Flow. Ph.D. Dissertation, Purdue Univ., West Lafayette, Ind.

Ransom, V .H ., Hoffman,J.D. and Thompson, H.D., 1972. A Second-Order
Bicharacteristics Method fo r  Three-Dimensional Steady, Supersonic Flow. A IA A  
Journal, Vol. 10, N0.12 , pp. 1573-1581.

Reymond, W .H., and Kuo, H.L., 1984. A Radiation Boundary Condition For M ulti- 
Dimensional Flows. Quart. J. Roy. Met. Soc., 110: 197-207.

Richardson, D.J., 1964. The Solution o f Two-Dimensional Hydrodynamic Equations by 
the Method o f  Characteristics. Methods in Computational Physics, edited by B. Alder 
Vol.3, pp.295-318.

R0ed, L.P. and Cooper, C.K., 1986. A Study o f  Various Open Boundary Conditions For 
Wind-Forced Barotropic Numerical Ocean Models. 18th International Colloquium on 
Ocean Hydrodynamics, Liege, Belgium.

Rudy, D.H. and Strikwerda, J.C., 1980. A Nonreflecting Outflow Boundary Condition fo r

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Subsonic Navier-Stokes Calculations. Journal o f Computational Physics, 36, pp.55-70. 
Sauerwein, H. and Sussman, Mark., 1964. Numerical Stability o f  the Three-Dimensional 
Method o f Characteristics. A IA A  Journal, Vol.2, pp.387-389.

Shepard, F.P. and Inman, D.L., 1950. Nearshore Circulation Related to Bottom 
Topography and Wave Refraction. Trans. Am. Geophys. Union, Vol.3, No.2, pp. 196-212.

Sobey, R. J., 1989. Variations on Fourier Wave Theory. Int. J. Numerical Methods in 
Fluids, 9: 1453-1467.

Sobey, R.J. and Thieke, R.J., 1989. Mean Flow Circulation Equations For Shoaling And  
Breaking Waves. Journal o f Engineering Mechanics. 115: 285-303.

Sobey, R.J. and Bando, K., 1991. Variations on Higher-Order Shoaling. Journal o f 
Waterways, Port, Coastal, and Ocean Engineering, Vol 117, N0.4, pp 348-368.

Spekreijse, S.P., 1980. M u ltig rid  Solution o f the Steady Euler Equations. CW I Tract 46, 
Center for Mathematics and Computer Science.

Skjebreia, J.E., 1987. Observations o f Breaking Waves on Sloping Bottoms by Use o f  
Laser Doppler Velocimetry. Report KH-R-48, W .M. Keck Laboratory o f Hydraulics and 
Water Resources, California Institute o f Technology, Pasadena.

Stive, M.J.F., 1984. Energy Dissipation In Waves Breaking On Gentle Slopes. Publication 
No.321, Delft Hydraulics Lab.

Stive, M.J.F. and Wind, H.G., 1986. Cross-Shore Mean Flow In  The Surf Zone. Coastal 
Eng. 10, pp. 325-340.

Stive, M.J.F. 1988. Cross-Shore Flow In Waves Breaking On A Beaching. Delft 
Hydraulics, Publication No.395.

Svendsen, I.A. and J. Buhr Hansen., 1977. The Wave Height Variation For Regular Waves 
In Shoaling Water. Coastal Eng. pp.261-279.

Svendsen, I.A. and Hansen, J.B., 1978. On Deformation o f Periodic Long Waves Over a 
Gently Slopping Bottom. Jour. Fluid Mech., 87: 433-448.

Svendsen, I.A., 1984a. Wave Attenuation And Set-up On A Beach. Proc. 19th Confc. 
Coastal Eng., 1: 54-69.

Svendsen, I.A., 1984b. Wave Heights and Set-up In a Surf Zone. Coastal Eng., 8: 303-329.

Svendsen, I.A., 1984c. Mass Flux and Undertow in a Surf Zone. Coastal Eng., 8: 347-365.

Svendsen, I.A., 1987. Analysis o f Surf Zone Turbulence. J. Geophy. Res. 92: 5115-5124.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Tennekes, H. and Lumley, J.L., 1973. A f irs t Course in Turbulence. The M IT  Press, 
Cambridge, Massachusetts.

Thieke, R.J., 1988. Mean Flow Integral Model For Shoaling And Surf Zone Waves. 
Dissertation, U.C. Berkeley.

Thieke, R.J. and Sobey, R.J., 1990. Cross-Shore Wave Transformation and Mean Flow  
Circulation. Coastal Eng., 14: 387-415.

Thornhill, C. K., 1948. The Numerical Method o f  Characteristic fo r  Hyperbolic problems 
in Three Independent Variables. A.R.E Report 29/48. No.2615.

Thornton, E.B. and Guza, R.T., 1986. Surf Zone Currents and Random Waves: Models 
and Fie ld Data. J. Phys. Oceanogr., 16: 1165-1178.

Townson, J.M., 1974. An Application o f the Method o f Characteristics to T idal 
Calculation in (x-y-t) Space. Journal o f Hydraulic Research, Vol. 12. pp.499-525.

Tsuchiya Y., Yamashita T. and Uemoto, M.. 1988. A Model O f Undertow In the Surf Zone. 
Coastal Engineering In Japan, Vol. 30, No.2. pp.63-73.

Tucker, M.J., 1950. Surf Beats: Sea Waves o f  1 to 5 Min. Period. Proc. Roy. Soc. 
London, A202: 563 - 573.

Van der Velden, 1989. Coastal Engineering. Delft University o f Technology.

Verboom, G.K., Stelling, G.S. and Officier. M.J., 1983. Boundary Conditions fo r  the 
Shallow Water Equations. In: M.B. Abbott and J.A. Cunge (Editors) Engineering 
Applications o f Computational Hydraulics I. Pitman, London, pp.230-262.

Williams, J.M., 1981. Lim iting Gravity Waves in Water o f  Finite Depth. Phil. Trans. Roy. 
Soc. London, A302: 139-188.

Webster, J.A., 1968. An Application o f the Method o f Characteristics to T idal 
Computation, published Ph.D. thesis, University o f Aberdeen, 1968.

Wylie, C.R. and Barrett, L.C., 1982. Advanced Engineering Mathematics. McGraw-Hill 
Book Company.

Yee, H.C. and Warming, R.F., 1985. Im plicit Total Variation D im inishing (TVD) 
Schemes fo r  Steady State Calculations. Journal o f Computational Physics, 57: 327-360.

Yoo, D. and O'Connor, B.A., 1986. Mathematical Modeling o f Wave-Induced Nearshore 
Circulation. Coastal Eng., pp. 1667-1681.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

APPENDIX A QUASI-LINEAR GOVERNING EQUATIONS FOR MEAN

WAVE PARAMETERS IN A ONE SPATIAL DIMENSION

To derive the compatibility equations, the closed integral equations (Equations 4.32 

through 4.34) for mean wave parameters in a one spatial dimension must be written in a 

quasilinear form. First these equations are written into non-conservative forms, then 

through linear combination they are transformed into a set o f three quasilinear equations 

each with the time derivative o f one dependent variable.

In addition to the general notations for dependent variables and closure variables, the 

following are also used to simplify the equations:

H,. = dimensionless ordinate on the closure surfaces, = H/HMiche. 

h. = dimesionless abscissa on the closure surfaces, = h + r f.

Th = -------- ---------
0.88tanh(h.)

Sh = --------— 2------
h 0.88sinh (h .)

Wave Energy Equation:

A ( l , l ) ^ + A ( l , 2 ) ^ + A ( l , 3 ) ^  + B ( l , l ) | ^  + B ( l , 2 ) ^  + B ( 1 , 3 ) ^  = D(1) 
9t 9t 9t dx dx dx

where

A(U)4 t  T‘ i : +w- +HT^ +w‘T‘ l : +(h^ +’1' )T̂  i
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2 L " 3H. dh.

^ . r  ^  ^ ltr

aws aws 
aH. +  ah.

) +

Wb(HSh
aH. ah.

) + (h + Ti + TltrXHSll^  + ̂ )  ]aH. ah.

A (l,3 ) = 0

an aic. .. auc. .. _ _  3Fh
h'a H . ' a H . ' " s dH / ' ' l ' , tr / ' n aH. 

b7ih 3H. ' 2 , t r y ' n  3H.

B(l,l) = F + K  + H T h(—^  + — 5-+ N s — i-) + (h + r| + r|tr)Th

B(l,2) = (h + ri +  T\a)[ HSt
3F, 3R U
3H. 3h. 2

+ -M H S ,
aw„ awh
3H. 3h. ) ]

+ (
u bw b

' h 3H. 3h.
+ Fb) ( l  +  HSb^ - + ^ )

.w h
B(l,3) = (h + t[ + r i ^ + N b)

D (l) = - B ( l , 2 ) | ^ - D b f- D bw 
3x

Continuity Equation:

A ( 2 , l ) ^ + A ( 2 , 2 ) ^  +  A ( 2 ,3 ) ^ -  + B (2 , l) |^  + B ( 2 , 2 ) ^ + B ( 2 , 3 ) ^  
3t 3t 3t 3x 3x dx

where

A(2,l)=0

A(2,2)=l

A(2,3)=0

B(2,l) = U + H T „ ^ -  + ThU t ^ -
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au au
B(2,2) = H (HSh — - + — ) +  U b (1 +  HSh + - r 5-)

aH. ah. aH. ah.

B(2,3) = h + q + T]n

D(2) = -B (2 ,2 )^ -  
dx

Momentum Conservation Equation:

A ( 3 , l ) ^  + A (3 ,2 ) ^ +  A ( 3 ,3 ) ^ -  + B ( 3 , l ) ^ +  B (3 ,2 )^  +  B ( 3 , 3 ) ^  = D(3)at at at ax ax ax

where

A(3,l) = B(2,1)

A(3,2) = B(2,2)

A(3,3) = B(2,3)

B(3,l) = U 1 - S s + ^ T i ' ( ^ ~ - '^ ^ " ) ~ ( h  + ̂ i+ Tlo)Th J ^ " + (Ub “ Sb )Th 

B ( M ) - h +?i- (h + lt+ t1.X H S . f L  + | t )  + H(HSl g + ^ )

■ H(HS" i : + f : 1 + < u ‘  ■ SJ<1+H S ‘  ^ + 1 : 1

B(3,3) = 2 (h  + t i  + TiIr)U b 

D(3) = -(B (3 ,2 )-h  + q ) | ^ - T bx

To derive characteristic equations, the above equations need to be further transformed 

into a system o f equations each with the time derivative of one variable only, with the 

form:
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t I f + A - i r 1 R = Q

in which I is a unit 3x3 matrix, R = [H, Tf, U b ] T, A x is a 3x3 coefficient matrix, and Q is

a 1x3 column vector o f non-homogeneous terms. A x and Q are given below. 

B ( l, l) -B (2 , l) *  A(l,2)
A , (1,1) = 

A x(l,2) = 

A X(U )  =

A (l,l)

B(l,2) -  B(2,2) * A(l,2) 
A (l,l)

B(l,3) -  B(2,3) * A(l,2)
A (l,l)

A x(2 ,l) = B (2,l)

A x(2,2) = B(2,2)

A x(2,3) = B(2,3)

B(3,l) -  A  x (1,1) * A(3,l) -  A  x (2,1) * A(3,2)
A x(3,l) = 

A ,  (3,2) = 

A , (3,3) = 

Q(D =

A(3,3)

B(3,2) -  A , (1,2) * A(3,l) -  A  x (2,2) * A(3,2) 

A(3,3)

B(3,3) -  A , (1,3) * A(3,l) -  A x (2,3) * A(3,2) 
A(3,3)

D (1)-D (2)*A (1,2)

A (l,l)

Q(2)= D(2)

Q 3 = D(3) -  Q (l) * A(3,l) — Q(2) * A(3,2) 
A(3,3)
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APPENDIX B QUASI-LINEAR GOVERNING EQUATIONS FOR MEAN

WAVE PARAMETERS IN TWO SPATIAL DIMENSIONS

To derive characteristic equations, the closed integral equations are written in a 

quasilinear form. This appendix gives the complete procedure and exact expressions for 

the quasilinear equations. In the following equations, 0 is the angle between the local 

wave direction and x axis, and H«, h-, Sh and Th are as defined in Appendix A.

Energy Conservation Equation:

A (l,l)  ~  + A(l,2) 2 .  + A(l,3) + A(l,4) ̂
dt dt dt dt

+ B (1 ,1 )|^+ B (1 ,2 )|5  + B (1 ,3 )^ L  + B (1 ,4 ) - ^  (B .l)
dx dx dx dx

+C(1,1) + C(l,2) ̂  + C(l,3) ̂  + C(l,4) = D (l)
dy dy dy dy

where

A(U)4 [  T- l : +w-+HT' f : +WJ' ^ : +(h+,i+'1- )T* ^ ]

A(l,2) = - [  HSh- ^ - + f ^ - + W b+H (H Sh- ^ . + ^ - )  +
2 L h dH. dh. b h dH. dh.

dn,r drr _  dWh dWh ,

Wb(HŜ +S : )+(h+T1+^ )(HSbi r +-d^)]

A(l.3)=0

A(1.4)=0

3F 3k  3U
B(1.1) = (F + K Jco s0  + H cos0Th(— - + — —+ N  - — )

5 5  h dH. dH. dH.

+ ( i ^ L + F i cose n h § ^ + ( h + n + i» ) T B( - ^ ! ^ + co s e J ! - )
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B(l,2) = Hcos0[ H S „ c f ^  + N,g L >  + f L  + £ ,  + N, | .  ]

+ (h + rj + 11„)[ + f  , + ̂ < H S bf ^ >  ]

+ ( ‘ L a . ^ „ e ) a + H s l | L + ^ ,

w
B(l,3) = (h+T i+ T lIr) ( - ^ - + N b cos2 6)

B(l,4) =  ^ y ^ ( h  +  Ti +  Titr)N b

3F 3K 3U 
C (l,l) = (F, + K s) sin 0 + H sin 9 Th ( ^ J - + ^ - L +  N s — )

VhW„ 3riIr _  V b awb . 3Fb

C(l,2) = H sin0[ ) + i  + f ^ + N i g .  ]

+ (h +  ̂ ) [  sin8(HSh| ^  + f  ) + ̂ ( H S b^  + f - )  ]

+ Fb sin 0)(1 + HSh + | ! k  
2 b h 3H. 3h.

C (i,3 )  =  l ! 2 ^ ® I ( h  +  Ti +  n Ir) N b

w
C(l,4) = (h + rv+ r\a )[ — ^  + N bsin20 ]

D (l) = - D bf — D wb - B ( l ,2 ) - — C(l,2)|^ -C (1 ,2 ) |^ -  
dx dy

30 90
+ [ H(FS + K 5) + (h + rf + r jD.)Fb ](sin 9  —  -  cos 0 — )
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Continuity Equation:

A ( 2 , l ) ^ + A ( 2 , 2 ) ^ - + A ( 2 , 3 ) ^ - + A ( 2 , 4 ) ^ -  
3t 3t 3t 8t

+B(2,1) + B(2,2) | 5 + B(2,3) B(2,4) ̂
dx dx dx dx

+ C ( 2 ,1 ) ^ + C ( 2 ,2 ) ^ + C ( 2 , 3 ) ^ - + C ( 2 ,4 ) ^  = D(2) 
dy dy dy dy

where

A(2,l)=0

A(2,2)=l

A(2,3)=0

A(2,4)=0

B(2,l) = Ucos0 + H cos0Th^ - + T hU b —
0H. n 0 3H.

B(2,3) = h + r\ + r \a 

B(2,4) = 0

C(2,l) = U sin 0 + H sin 0 Th + Th V b
h 0H. h b 0H.

C(2.2) = H sin0 (HSh — + — ) + Vb(l + HSh ^ L + ^ - )
3H. 0h. b'  3H. dh.

C(2,3) = 0 

C(2.4) = h + r[ + r i [r

D(2) = -B (2 ,2 ) ^ -C (2 ,2 ) ^ -  + HU (sin0 ^ - c o s 0  — ) 
dx dy dx dy
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Momentum Equation In x Direction:

A(3,1) A(3,2) A(3,3) -+ A(3,4) -3Vbat at at at
+ B ( 3 , l ) ^ + B ( 3 , 2 ) ^ + B ( 3 , 3 ) ^ - + B ( 3 , 4 ) ^  (B.3)

dx dx dx dx

+C(3,1) ■~ + C (3 ,2 )  fU C (3 ,3 )  • C(3,4) ̂  =  D(3) 
dy dy dy dy

where

A(3,l) = B(2,l)

A(3,2) = B(2,2)

A(3,3) =  B(2,3)

A(3,4) = 0

B(3,l) = U 2 cos2 0 - S s - N  sin2 0 + HTh(cos: sin2e | ^ - )
dH« oH« dH«

' " )T ‘  (f r + s in ! e l s r )+ ( U » ' N - si” 2 e )T ‘  i t

    r 9Sh ash , dN h dN b i
8(3,2) =  h ^ - ( h  +  I 1 + l U [ H S s ^ + ^ + si„=6(HSB^ + ^ ) ]

+ (U 2 -S „  - N „  sin2 8 ) ( l + HSh
d H . dh.

B(3,3) = 2 (h  + r [+ r | lr)U b 

B(3,4) = 0
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C(3,d = ^ ( 0 ! + ^ > + H T »! ! y ^ § £ - + § i7 >

+ ( h + n + T i lr)
h 3H.

Si" 2 9 ~

sin 20 sin 20 r 9U2 3N 9U 2 3N ,
C,3.2) = U hV l + _ N l + H — [ H V — + ^ ) + — ] +

(h + T| + 11̂ ) i!E 2i (HSl | ^ + ^ i i . ) + (U ,V ,+ N k
2 9H. 9h. b b b

S i n 20 s r r r o  . ^ H t r .

— ) (H S * i T + i T )

C(3,3) = Vb(h + i i  + T1J

C(3,4) = U b(h + i i + T l t r )

3h 3h
D(3) = —Tb — (B (3 ,2 )-h -r f)-—  C(3,2)—

3x 3y

+ [ H(N, + U2) + (h + Ti + TlIr)Nb 1 (s in 2 0 - — c o s 2 0 — )
9x 9y

Momentum Equation In y Direction:

A(4,l) ̂  + A(4,2) ̂ + A(4,3) ̂ ~ + A(4,4)
3t 3t 3t 3t

+B(4,1) + B(4,2) p + B(4,3) ̂ + B(4,4) ̂  (B .4)
9x d x  d x  d x

+C(4,I) + C(4,2) | 5 + C(4,3) ̂ + C(4,4) ̂  = D(4)
9y  d y  d y  d y

where

A(4,l) = C(2,l)

A(4,2) = C(2,2)

A( .4,3) = 0 

A(4,4) = C(2,4)

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

B(4,1)=C(3,1)

B(4,2)=C(3,2)

B(4,3)=C(3,3)

B(4,4)=C(3,4)

C(4,l) = U 2 sin2 9 -S ,  - N ,  cos2 0 + HTh(sin2 e | | — cos2 0 ^ - )

- ( h  + i l+ ' l J T , ( | ^ - + c o s 2 0 ^ ) + ( V b2 -S b - N „  cos2 e)T„

C (4J) = h + T i- ( h + r i+ t i . ) [  HSb J jS -+ |?S -+cos2 9(HS„ ]

+ H[ sin2 0(HSB^ L + ^ - ) - H S B —  cos2 0 (HS, 1 ^ + ^ - )  ]
1 " dH. dh. " dH. dh. h dH. dh. 1

+ (V 2 - S b - N b cos2 0)<1+HS„
oH. dh.

C(4,3) = 0

C(4,4) = 2 (h  + ri+ T itr)Vb

D(4) = - x by -  B(4,2) f* -  -  (C(4,2) -  h -  q)
dx dy

30 30
- [  H(N + U 2) + (h + q + q )N b Vcos 20 —  + sin 20 — )

d x  d y

Equations (B .l) through (B.4) are further transformed into a system with equations 

each containing only time derivative o f one variable, i.e.

[ < f + A , | - + A , | -  ]R = Q (B.5)
L 3t d x  d y

in which I is a unit 4x4 matrix, R = [H. q, U b, V J T, Ax and A y are 4x4 coefficient

matrices corresponding respectively to the x- and y-derivative terms, and Q is a column
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vector comprised by non-homogeneous source terms. 

The entries o f A x , A y and Q are given below 

B (l,l) -  B(2,l) * A(l,2)
A x(l, 1) =  

A x(l,2 ) = 

A x (1.3) = 

A .( l,  4) =

A (l,l)

B(l,2) — B(2,2) * A(l,2) 

A (l,l)

B(l,3) — B(2,3) * A(l,2) 
A (l,l)

B(l,4) -  B(2,4) * A(l,2)
A (l,l)

A X(2,1) = B(2,1)

A x(2,2) = B(2,2)

A x(2,3) = B(2,3)

A x(2,4) = B(2,4)

B(3,l) -  A  x (1,1) * A(3,l) -  B(2,l) * A(3,2)
A x(3,1) =

A (3,2) =

A x(3,3) =

A (3,4) =

A , (4,1) =

A x(4 ,2) =

A(3,3)

B(3,2) -  A  x (1,2) * A(3,l) -  B(2,2) * A(3,2) 

A(3,3)

B(3,3) -  A  x (1,3) * A(3,l) -  B(2,3) * A(3,2) 

A(3,3)

B(3,4) -  A  t (1,4) * A(3,l) -  B(2,4) * A(3,2) 

A(3,3)

B(4,l) -  A  x (1,1) * A(4,l) -  B(2,l) * A(4,2) 

A(4,4)

B(4,2) -  A  x (1,2) * A(4,l) -  B(2,2) * A(4,2) 

A(4,4)
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A , (4,3) 

A  *(4,4) 

A y( U )  = 

A y(l, 2) : 

A y(l,3 ) =

A y(l, 4):

A y (2, 1): 

A y(2,2) : 

A , (2, 3) 

A y(2,4) =

A , (3,1) = 

A y(3,2) 

A y(3,3) 

A y(3,4) 

A y(4 ,1) =

B(4,3) ~  A  x (1,3) * A(4,l) -  B(2,3) * A(4,2) 
A(4,4)

B(4,4) -  A  x (1,4) * A(4,l) -  B(2,4) * A(4,2) 

A(4,4)

C(l,l) -  C(2,l) * A(l,2)
A (l,l)

C(l,2) -  C(2,2) * A(l,2)
A (l,l)

C(1,3)-C(2,3)»A(1,2)

A (l,l)

C g 4 )-C (2 ,4 )*A g 2 )
A (l,l)

C(2,l)

C(2,2)

C(2,3)

C(2,4)

C(3,l) -  A y (1,1) * A(3,l) -  C(2,l) * A(3,2) 

A(3,3)

C(3,2) -  A y (1,2) * A(3,l) -  C(2,2) * A(3,2) 

A(3,3)

C(3,3) -  A y (1,3) * A(3,l) -  C(2,3) * A(3,2) 

A(3,3)

C(3,4) -  A y (1,4) * A(3,l) -  C(2,4) * A(3,2) 

A(3,3)

C(4,l) -  A y (1,1) * A(4,l) -  C(2,l) * A(4,2) 

A(4,4)
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A v (4,3) =

C(4,2) -  A  (1,2) * A (4 ,l) -  C(2,2) * A(4,2)
A  (4,2) = --------------- 1-----------------------------------------

A(4,4)

C(4,3) -  A y (1,3) * A (4 ,l) -  C(2,3) * A(4,2) 

A(4,4)

C(4,4) -  A y (1,4) * A (4 ,l) -  C(2,4) * A(4,2) 

A(4,4)

D ( l) -D (2 ) *  A(l,2)

A y (4,4) =

QU) =
A (l,l)

Q(2)=D(2)

D(3) -  Q (l) * A(3,l) -  D(2) * A(3,2)
Q(3) = 

Q(4) =

A(3,3)

D(4) -  Q (l) * A(4,l) -  D(2) * A(4,2) 
A(4,4)
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APPENDIX C CHARACTERISTICS AND CHARACTERISTIC EQUATIONS 

FOR SHALLOW WATER EQUATIONS

As indicated in Chapters 5 and 6, the integral equations for mean-flow mass 

conservation and momentum conservation are quite similar to the shallow water wave 

equations when in deep water or i f  wave height is small. Thus an analysis on the shallow 

water wave equations w ill assist in understanding the current system, and in clarifying the 

procedure for deriving the characteristics and characteristic equations. In this appendix, 

the characteristics and characteristic equations for the one- and two-spatial-dimension ( l-  

D and 2-D) shallow water equations are derived, with particular attention directed to the 

physical interpretation o f the eigenvalues and eigenvectors.

C.l Characteristics For 1-D Shallow Water Equations

To illustrate the basic concept o f the method o f characteristics, a single homogeneous, 

quasilinear equation

l r + u y - = 0  ( C L l )dt 9x

w ill first be studied. In this equation, t and x are time and space coordinates, P the

dependent variable, and u a variable which may be a function o f x, t and P, but not o f

9P 9P dx
— or — . Along a specific path defined by —  = u , Equation (C. 1.1) can be written as 
9t 9x dt

dP
^ -  = 0 (C.1.2)
dt

Equation (C.1.2) is called a characteristic equation for Equation (C. 1.1), and the path is

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

called a characteristic curve. Compared with the original equation, the characteristic 

equation has the following advantages:

• It is an ordinary differentiation equation.

• P is invariant along the characteristic curve, and moves at a speed equal to u.

The first simplifies the problem. In particular, for a system o f many equations, the 

original partial differential equations are transformed into a set o f ordinary differential

equations. The second feature assists in the physical interpretation o f a system. These

features o f the characteristic equations make the method o f characteristics attractive in 

dealing with a quasilinear system-a system with only derivatives o f first order.

A systematic approach to the derivation o f the characteristic equations for a 

quasilinear system in one spatial dimension is now considered for the one-spatial- 

dimension shallow water wave equations.

The 1-D shallow water wave equations are the continuity equation:

= 0 (C.1.3)
dt dx

and the momentum conservation equation:

du du dh , ..
■ jr+ u T - = - g 37 <c l -4>dt dx dx

where h(x,t) is the total water depth, u(x,t) the depth-averaged velocity, and g the 

gravitational acceleration. The non-homogeneous source terms have been omitted since 

they are not relevant to the characteristics o f the system. By introducing a vector 

dependent variable R=[h,u], Equations (C.1.3) and (C.1.4) can be written as a single 

vector equation
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( I~ + A -^ - )R  = 0 
dt dx

in which I is a unit 2x2 matrix, and A  is the coefficient matrix

(C.1.5)

A = (C.1.6)

A  characteristic curve S(x,t)=0 for a system w ill exist i f  a system of first-order 

equations can be transformed through a linear combination o f the form

m J - + a ! - ) r  = o
3t 3x

(C. 1.7)

into an equivalent system containing only derivatives along the curve S; t  is an arbitrary 

vector (£u i 2 )•

Along the characteristic curve, one o f the co-ordinates, say t, can be eliminated by 

differential calculus

or, along the curve S, as

dS =  ̂ d x + ^ d t  = 0 
dx dt

dt | _ dS/dx _ nx 
dx s dS/dt nt

(C. 1.8)

(C. 1.9)

where the components (nt, nx) o f the normal vector n = VS are introduced. Then the 

partial derivatives along the line S can be written as

d _ d ^ d t d _ d  n x d 
dx dx dx dt dx n . dt

dt dt nt dt

(C. 1.10)

(C.1.11)
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Introducing these relations into the linear combination (C.1.5) leads to

dt 3x n, 3t
(C.1.12)

A  characteristic curve w ill exist for R i f  the system can be reduced to the form

> a | ^ = o
dx

Subtracting Equation (C.1.13) from Equation (C.1.12) gives

(C. 1.13)

1 •  (n t I + n xA ) = 0 (C.1.14)

For non-trivial solutions for ^ , the determinant o f the matrix (nxA+ntI) must be equal to

zero, i.e.

de t(nxA + n tI) = 0 (C.1.15)

By introducing X =  L , the above equation is an eigenvalue problem.

det [A -  XI] = 0 (C. 1.16)

The vector satisfying equation (C.1.14) is termed as a left eigenvector1 for the matrix A. 

Substituting Equation(C. 1.6) for A  into Equation (C.1.16) gives

det
u -  X h 

g u - X
=  0

which leads to

(u -  X)1 -  gh = 0

Equation (C. 1.18) gives two roots

(C.1.17)

(C.1.18)

' There are generally two eigenvectors corresponding to a matrix A, the left eigenvector 
which is defined by 1 •  (A -  XI) = 0, and the right eigenvector, defined 

b y ( A - X lW  = 0.
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X.t — u + C, A,-> — u — C (C.1.19)

in which C=A/g h , the gravity wave celerity. Since the two eigenvalues are real and

distinct, the 1-D shallow water wave equations are a hyperbolic system.

To derive the eigenvector 1 , substitute the expressions for A and A  into Equation 

(C.1.14) giving, for Ai=u-C,

These equations are linearly dependent because the determinant o f the coefficient matrix 

is zero. So only indefinite solutions for j a n d  t , can be obtained. But the ratio o f ( ,  to 

t  [ is uniquely given and can be obtained from either of Equations (C.1.20). It is equal to 

-C/g. Since the eigenvector is only used for linearly combining equations in Equation 

(C.1.7), only the ratio o f its components are important. One component can be set

C
arbitrarily. Setting i , =1, the eigenvector is then £, = [1,----- ]. Similarly, the eigenvector

For each eigenvalue and eigenvector, the corresponding characteristic equation is 

given by Equation (C.1.5). For Ai, the characteristic equation is

By replacing h by C2/g (from C2=gh), and multiplying through by g/C, Equation (C. 1.21) 

becomes

(C.1.20)

g

corresponding to the second eigenvalue A2 = u + C is t 2 = [1,—].
g

(C. 1.21)

d (u -2C ) . , 9 (u -2 C )
  ------ + ( u - C ) -----   = (C.1.22)

178

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

u-2C is the well-known Riemann invariant along the characteristic. The characteristic

equation for the eigenvalue X2 = u + C  is

d(u +  2C) . dx _ _
-------------- = 0 along —  = u + C (C.1.24)

dt dt

The above procedure is valid for a quasiliner system o f any number o f equations.

dx
Since the characteristic path is defined by—  = X , the physical meaning o f the eigenvalue

dt

is clear. It is just the speed at which information propagates along the characteristic 

curve. For the 1-D shallow water wave equations, there are two distinct eigenvalues, so 

from a point information propagates along two distinct paths.

C.2 Characteristic Properties For 2-D Shallow Water Equations

The 2-D shallow water wave equations are the continuity equation:

a  *h u ) 3(hv>
3t dx dy

and the x- and y-momentum equations:

3u 3u 3u 3h
 h u —  + v —  = - g —  (C.2.2)
at dx dy ° d x

3v 3v 3v 3h ._ „  _.
— + u — +v —  = - g —  (C.2.3)
3t dx dy dy

Again all the non-homogeneous terms have been omitted. By introducing a vector

dependent variable R=[h,u,v], Equations (C.2.1) through (C.2.3) may be grouped into a
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single vector equation in quasilinear form:

4 +a - s +a 4 * - °

In which I  is a unit 3x3 matrix, and the coefficient matrices are

(C.2.4)

u h 0

A , = S u 0

0 0 u

v 0 h

II<

0 V 0

g 0 V

(C.2.5)

(C.2.6)

Following Hirsch (1986), a characteristic surface S(t,x,y) in two spatial dimensions w ill 

exist i f  the first order system o f equations, i.e. Equation (C.2.4), can be transformed 

through a linear combination o f the form

(C.2.7)

into an equivalent system containing only derivatives on the surface S, where ( is an 

arbitrary vector(C ,,f2, i 3).

Along the surface S(x, y, t)=0, differential calculus allows one o f the co-ordinates, say 

t, to be eliminated. Total differentiation o f the surface function gives:

as . as . as . A
dS = —  d t+ — dx+ — dy = 0 

at dx By
(C.2.8)

Also along the surface S,

jk
3x

as/ax
as/at n.

(C.2.9)
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*  | | | : . - i t  (C.2.10)
dy dS/dt nt

where(nt, nx, ny) are the components o f the normal vector n = V S . The partial derivative

with respect to x along the surface S, d / d x ,  is

(c.2.11)
dx dx dx dt dx n t dt

Similar relationships can be established for y and t. For t, the derivative on the surface is 

equal to zero. Introducing these relations into the linear combination (C.2.7) leads to

1 • [-1 | -  + A  x J -  -  1 .) + A ( | -  -  — -^-)]R = 0 (C.2.12)
dt dx n t dt y dy n t dt

A  characteristic surface w ill exist for R i f  the system can be reduced to the form

t . ( A ± + A JL)R = 0 (c .2 .13)
dx dy 

which requires that the surface S satisfies

f« (n tI + n xA x + n yA y) = 0 (C.2.14)

For nontrivial solutions for 1, the determinant o f the matrix (ntI + nxA x + n yA y) must be 

zero, i.e.

det| ntI + n xA x + n yA y | = 0 (C.2.15)

Introducing X=- nt, the above equation becomes an eigenvalue problem for the matrix 

(ntA x+ nyA y):

det| (n xA x + n yA y) - X l  | = 0 (C.2.16)

Substituting Equations (C.2.5) and (C.2.6) for Ax and Ay into the above equation gives
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unx + vny - X  hnx 

det gnx unx + vn

hnx hny

unx + vny -  A. 0 = 0

0 unx -f vny - X

(C.2.17)

gny

which can be expanded to

or

(unx + v n y -X )[(u n x + v n y -A .)2 -g h (n 2 + n ; ) ]  = 0

a  (3 = 0 (C.2.19)

(C.2.18)

where a  = unx + vny -  A. and (3 = (nxu + nyv - X ) 2 -g h (n 2 + n2) .

In the (nx, ny, X) coordinate system, (3=0 defines a characteristic normal cone,, w ith apex at 

(nx, ny, X)apex=(0,0,0), cutting the planes a=constant in circles. a=0 is a characteristic 

normal plane. Therefore, there are two families o f characteristic normal, a normal cone 

and a normal plane.

From (3=0, there are two distinct eigenvalues:

By introducing cylindrical coordinates, nx= r cos(0) and ny= r sin(9), the eigenvalues can 

be written as

(C.2.20)

in which C = .y ih - Froma=0, a third eigenvalue is obtained as

X3 = unx + v n y (C.2.21)

X, 2 = r [u cos(0) + v sin(0) ± C] (C.2.22)

and

X3 = r[ucos(0) +vs in (0 )] (C.2.23)
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Since the eigenvalues are real and distinct, this system is hyperbolic.

Note that X, nx, and nyare all proportional to r, so the value o f r  can be set arbitrarily. By

choosing r= l, the eigenvalues take the form:

X,, = u cos 0 + v sin 9 ±  C (C.2.24)

and

X 3 = u cos 0 + v sin 0 (C.2.25)

The characteristic normal vectors in (x,y,t) space are

hj =(cos0, sin0, Xs) i= l,2 ,3  (C.2.26)

As in one spatial dimension, the eigenvalue represents the speed at which the 

information propagates along the characteristic surfaces.

It is further observed that ucos(0) +  vsin(0) is the projection o f a resultant velocity

vector U on the 0 direction, as denoted by U(0) in Figure C . l .

y
U(0)

x

Figure C. 1 Velocity Projection On A  Directional Line 

I f  using the projected velocity, the eigenvalues can be written more simply as

XI2 = U (0 )± C  (C.2.27)

and

X3 = U(0) (C.2.28)
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Equation (C.2.27) gives exactly the same expression for the eigenvalue as in one spatial 

dimension except that in two spatial dimensions a nominal velocity is used. The third 

eigenvalue is always equal to the velocity projection. Along a streamline, say at an angle

is real representing a resultant velocity. The streamline is o f special interest because the 

maximum eigenvalue always occurs on this line. The maximum eigenvalue is important 

in numerical simulation as it dictates the stability criterion-the CFL condition.

On the x-axis, the three eigenvalues are A,, 2 (0) =  u ± C  and A.3 (0) =  u ; and on the y-

axis, the eigenvalues are A., 2(90°) = v ± C  and A.3(90°) = v .

Corresponding to each eigenvalue, Equation (C.2.14) defines a set o f relationships 

among the components o f an eigenvector. For A i, Equation (C.2.14) becomes

Again these equations are not linearly independent because the determinant o f the 

Jacobian coefficient matrix is always zero. Thus only indefinite solutions can be 

obtained. By setting f , = l ,  ( 2 and can be obtained from any two equations in

Similarly, the eigenvector corresponding to the eigenvalue A. 2 can be obtained as

<t> with the x-axis, the eigenvalues are A.,, (<)>) = U ±  C and A. 3 (<(>) = U . Here the velocity

C^, + gcos0 f 2 + g s in 0 £ 3 = 0  

hcos0^, + C i 2 = 0 

hcos0^ 1 + C f 3 = 0

(C.2.29)

Equation (C.2.29). The eigenvector for A.i is =[1,

(2 =[1,
hcos0  hsin 0  

C ’ C
]. And the eigenvector for A.3 is = [0,1, -  C tan 0].

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Orthogonal to each normal vector defined by Equation (C.2.26), there is a 

characteristic surface. The characteristics corresponding to X.i and X2 are termed wave 

characteristics because the eigenvalues are related to the gravity wave speed. And the 

characteristics corresponding to A.3 are termed f low  characteristics because the eigenvalue 

is only related to flow velocity. The characteristic surfaces o f these two families are also 

significantly different. The characteristic surfaces o f the first family are orthogonal to the 

normal cone (P=0) and are inscribed by a conoid, cutting any plane parallel to the x-y 

plane in circles, as shown in Figure C.2. The characteristic cone is defined by:

(dx -  u dt)2 +  (dy -  v dt)2 = gh (d t)' (C.2.30)

The line o f tangency between the cone and a characteristic surface is called a bi

characteristics

The characteristic surfaces o f the second family consist o f surfaces whose normal 

vectors lie on a common plane, the a=0 plane. The mutual intersection o f these surfaces 

is a curve whose projection on the x-y plane is a streamline. The line is defined by:

dx=u dt, dy=v dt, dt=dt (C.2.31)

This line is also the central axis o f the characteristic cone of the first family.

characteristic
cone

P(x,y.t)

Figure C.2 The Characteristic Cone And Streamline
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As shown in Figure C.2, there are two limbs o f the characteristic conoid from a point. 

A  disturbance initiated at the point propagates along the bi-characteristics in the positive t 

direction. Accordingly, no point outside this conoid is influenced by the disturbance. 

Thus the convex hull o f the upper conoid represents the domain o f influence for the point. 

On the other hand, disturbances at an earlier time outside the lower conoid do not 

influence the point. Thus the convex hull o f the lower conoid is the domain o f 

dependence for the solution point.

The eigenvectors, bi-characteristics and characteristic surfaces are all defined in the 

(x-y-t) solution space. Thus the eigenvector is not a physical vector, nor are the 

characteristic surfaces physical surfaces. The characteristic surfaces represent wave 

fronts in the (x-y-t) space.

The characteristic equations can be derived by substituting the expressions for the 

eigenvectors back into Equation (C.2.7). For Xi,

, hcos0 hsinG, 
( 1.  — ,------ — ) •

3h

at
3u
aT
8v
I t

„  hcosG hsinG,
+ (1,------——,----- — )•

„  hcosG hsin0N 
+ (1, — ,-----— )•

V 0 h

0 V 0

g 0 V

u h 0

g u 0

0 0 u

ah
ay
3u

ay
av

ay.

= o

ah
ax
3u
ax
av
ax

(C.2.32)

which leads to
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(C.2.34)

Grouping the above equation based on each dependent variable gives

dh . _ .. dh , _ . dh
 h(u-CcosG)— + (v -C s m 0 )  —
dt dx dy

CcosGdu CcosG, A. du CcosG, . .. du
------------------------------ (u -C cosG )------------------(v -C s inG ) —

g dt g dx g dy

CsinGdv CsinG, ^  m dv CsinG, . dv
-----------------------------(u -C cosG )— + -----------(v -C s inG ) —

g dt g dx g dy

du du dv dv
+sin 0 (CsinG-— CcosG— )-cos0  (C sinG -— CcosG— ) = 0 

dx dy dx dy

This equation is universally valid since it is just a Unear combination o f the original 

equations through the components o f the characteristic vector. But it only describes 

information propagation at a specific speed. By introducing the differentiation along a 

bi-characteristic curve, Equation (C.2.34) can be further simplified to 

dh CcosGdu CsinGdv CsinG du CcosG dv
d t g d t g d t g d(j) g d<]>

= 0 (C.2.35)

where

—  = — +(u  -CcosQ)— + (v  -C s in G )^ -  (C.2.36)
d t dt dx dy

—  = C s in0^— CcosG^- (C.2.37)
dcj) dx dy

The parameter t(x,y,t) is a parametric expression for the bi-characteristics. <J)(x,y,t) is a

parametric expression for the curves on the characteristic conoid cut by a t=constant

plane. The relationship between parameters t  and <J> w ill be discussed in detail in
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Appendix D.

As in one spatial dimension, the water depth h may be replaced by C2/g. After some 

algebraic manipulation, Equation (C.2.37) reduces further to 

d (2 C -u co s0 -vs in 0 ) d (vcos0-usin0)
-------------------------------------------------------------- — (J (C^.Z.jo)

dx d<)>

This equation, in contrast o f equation (C.2.34), is only valid along the bi-characteristics.

Unlike in one spatial dimension, the characteristic equations s till involve derivatives in

two independent directions. The characteristic equations are s till partial differential

equations. Compared to the original equations, the derivatives are in one lower

dimensions. Besides, the characteristic equation contains the direction 0 which is defined

within (-7t, 7t). So there are an infinite number o f characteristic equations for each

eigenvalue. These features make numerical solutions by the method o f characteristics in

two spatial dimensions totally different from that in one spatial dimension.

Sim ilarly, the characteristic equation for the eigenvalue X2 can be obtained as

dh Ccos0 du C sin0dv C sin0du Ccos0dv ,  . . .
— h--------------- + ------------------------------- h---------------- = 0 (C.2.39)
dx g dx g dx g d<j) g d<f>

or

where

d(2C + ucos0 + vsin0) + d (vcos0-usin0) ^  ^
dx + d i  "

—  = — + (u + C co s0 )^ - + (v + C s in 0 )^ - (C.2.41)
dx dt dx dy

and
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—  = -C s in 0 ^ -+ C c o s 0 ^ - (C.2.42)
d<)> dx dy

Equation (C.2.38) is equivalent to Equation (C.2.35) since 0 ranges from -it to k  and

sin(0+7t)=-sin0, cos(0+7t)=-cos0. Equation (C.2.39) is the most common form o f

characteristic equations in the literature. It is clear that the derivative d/d<|> in equation

(C.2.42) is the directional derivative along the normal o f the characteristic surfaces, but

multiplied by C. The quantity v cos0-u sin0 is the projection o f the velocity vector on

the normal. Equation (C.2.40) is readily reduced to the Riemann invariant form in one

spatial dimension by substituting 0=0 and v=0. The variable 2C+ucos0+vsin0 is

invariant along the characteristic surfaces i f  (v cos0-u sin0) is constant along the normal

i vline to the vector (cos0, sin0) in x-y plane. This is ensured by choosing 0=tan' ( —) or
u

along the streamline. So along the streamline, U ±2C =constant, where U is the resultant

velocity. The system in two spatial dimensions along the streamline behaves exactly the

same as in one space dimension.

The characteristic equation corresponding to the eigenvalue is

. ,,,9 u  9u 9u 9h _ 9 v  9v 9v 9h. .
-s m 0  (—  + u — + v — + g —  ) + cos0(——t-u— + v — + g —  ) = 0 (C.2.43)

dt dx dy dx dt dx dy dy

Equation (C.2.43) is just the y-momentum equation multiplied by cos0 minus the x-

momentum equation multiplied by sin0. This equation can be further simplified by

introducing the differentiation along the line defined by Equation (C.2.31):

d u dv g dh
-s in 0 -----+ cos0——+ ——  = 0 (C.2.44)

dy dy C d0
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Replacing h by C /g and combining the first two terms leads to

d (vco s0-u s inS ) d(2C)
dy d<|)

=  0 (C.2.45)

in which

d a 3 3
—  = — + u— + v —  
dy 3t 3x dy

(C.2.46)

and d/d<{) is as defined in Equation (C.2.42). Again the characteristic equations, i.e. Eqs. 

(C.2.45), involve differentiations in two independent directions, one fewer than in the 

original partial differential equations. Equation (C.2.45) is sim ilar to Equation (47) o f 

L in  and Shen (1984). The characteristic equations for the three eigenvalues involve 

differentiation in three directions, that is, the line defined by y, bi-characteristics T and 

information front 9 (to be discussed in detail in Appendix D).

One important fact about the characteristic equations is that there are infinite 

characteristic equations, but there are only three unknowns. Daubert and Graffe (1967) 

proved uniqueness o f solutions for the shallow water wave equations fo r a pure in itia l 

value problem. Since the solutions are unique, there should be only three independent 

characteristic equations (Ransom et al. 1972). A  simple proof is given here. Denoting 

the eigenvector in direction 0 as L(0), then the three eigenvectors are recast as a 3x3 

matrix:

L(0) =

Vl l

I 62

1 -

1

0

hcos0 hsin0
C

hcos0

C
sin0

C
hsin0

C
- C O S 0

(C.2.49)
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Adding an arbitrary angle e to 0, the corresponding eigenvectors L(0+e) w ill be

L(0 +  e) = lQ+t
2

I ~
hcos(0 + e) hsin(0+£)"

0

C
hcos(0+£)

C
sin(0 + £)

C
hsin(0+£)

C
- C O S ( 0  +  £ )

(C.2.49)

I f  a eigenvector at the direction 0+£ for an arbitrary £, L(0+£), can be obtained through a 

linear combination o f the component vectors o f L(0), then L(0+£) is dependent on L(0). 

By inspection, the following relationships always exist:

= | [ ^ 9 + ? 28+ C 0 S £ (^ -£ 29) ] - ^ ^ ^

• +  * !  - C 0 S £ ( 7 f - £ 9) ] + - ^ p - ^  (C.2.50)

f 9+E =sin£(?,9 - £ 2 ) + c o s e ? 9

This shows that L(0+£) is dependent on L(0), and proves that there are only three 

independent characteristic equations, since £ is an arbitrary angle.

It is also interesting to notice that the integral o f the characteristic equations o f wave 

characteristics over 0=(O,2jc) is exactly the continuity equation and the integral o f the 

characteristic equations o f flow  characteristic over 0=(O,2tt) is triv ia l.

It can also be shown that the Equations (2.39) in four different directions w ith 

uniform te/2 angular spacing constitute an independent set o f characteristic equations 

which is equivalent to the set o f characteristic equations along any one o f the four
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directions. The proof is given here.

Along any given angle 0, the eigenvector fo r Equation (C.2.39) is

- 9 r, hcosG hsinG , , .. .
t \  =[1, ----------,  ]. Along the direction 0+7t,

- 8 + * ^  hcos(Q + 7t) hsin(0 + 7t)j ^  _  hcosG hsinG  ̂ (C 2  51)

which is equal to ~t\. Sim ilarly, along 0+71/2 and 0+37t/2, the eigenvectors I 2 are

-jb+kn  r, hsinG hcosG, , r, hsinG hcosG, , .^e+K/. _ [ i t  _— , — - — ] and 2 = [1, — - — , ------ --— ].  the average o f

^9+it/i jb*3k/2 js eqUaj t0 ^8 So characteristic equations (Equation C.2.39) in 0=7t,

3nJ2, 0 and 7t can be combined into a three linearly independent equations which are 

exactly the same as the three characteristic equations corresponding to Xi A2 and X3 in any 

o f the four direction.

Thus the characteristic equation corresponding to the flow  characteristics can not be 

used for obtaining numerical solutions, because they can be combined from the 

characteristic equations for wave characteristics in two perpendicular directions. The 

most common choices o f the directions for setting up characteristic equations are 0=7t, 

37t/2, 0 ,7t (Townson,1974).
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APPENDIX D CHARACTERISTICS IN TWO SPATIAL DIMENSIONS

This appendix w ill focus on the general properties o f characteristic surfaces, the 

physical meaning o f a bi-characteristics, the relationship between the bi-characteristics 

and other curves on the characteristic surfaces, and finally on how to determine the b i- 

characteristics i f  the eigenvalues are known.

D .l. General Properties of Characteristic Surfaces

The follow ing properties o f characteristic surfaces are noteworthy:

• Corresponding to each eigenvalue X, there is a characteristic surface. The normal 

vector N  o f the characteristic surface is proportional to (-X(Q), cos0, sinG), where 0 is 

the azimuth at which the eigenvalue is obtained.

• I f  a vector S (At, Ax, Ay) on the characteristic surface is not perpendicular to the t 

axis. Ax and Ay may be interpreted as diplacments in x and y direction during a time 

interval At. In particular, i f  At is equal to unity, the corresponding Ax and Ay take the 

values o f the velocity components in x and y directions, say C lx and Cly, respectively. 

Then this vector is expressed by S ( I, C \ .C1,). This vector is perpendicular to the 

normal vector N (-X, cos0, sin0) to the surface, leading to

S • N = (1, C 1*, C l y) -(—X, cos0, sin0) = 0 (D .l)

or

C \ cos0 + C  sin0 = /. (D.2)

This relationship is valid for any line vector on the characteristic surface which is not 

perpendicular to the t axis.
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• The vectors on the characteristic surfaces perpendicular to the t axis may generally 

expressed by (0, C2X, C2y). C2X and C2y can no longer be interpreted as velocity but a 

vector on (x,y) plane. This vector is also perpendicular to the surface normal vector, 

such that

C2x • cosG +  C2y • sinG = 0 (D.3)

• Bi-characteristics is the line o f tangency between a characteristic surface and a 

characteristic cone, see Figure D .l. The characteristic cone is a cone insecribing the 

characteristic surfaces for entire azimuth (0,2k). The bi-characteristics is important to 

the numerical simulation w ith the method o f characteristics (MOC) because it is the 

path normally used for integration o f the characteristic equations.

characteristic cone

characteristic
surface

bi-characteristic

normal cone

Figure D .l Relationship among characteristic surfaces, 
characteristic cone and bi-characteristics.

D ifferent from other lines on the characteristic surface, the bi-characteristics is the 

linkage among the characteristics in different directions because the characteristic 

cone is the linkage among the characteristics in all directions. Thus the b i

characteristics can not be determined by the eigenvalue and eigenvector in a specific 

direction alone. To determine the bi-characteristics, the equation for the characteristic 

cone must be known. The domain enclosed by the bi-characteristics is the domain o f

influence or the domain o f dependence.
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• The derivatives in characteristic equations are only along the characteristic surface. 

In other words, the derivatives are with respect to two independent variables.

D.2 Integration Paths

For a hyperbolic system with three independent variables, a ll derivatives in 

characteristic equations can be written with respect to just two parameters. There are, 

however, in fin ite  pairs o f non-parallel vectors on the characteristic surface which can 

serve as the dual directions for the derivatives in the characteristic equation.

bi-characteristic

trace of point P

Figure D.2 Information Front Propagation 

But only two vectors on the characteristic surface can be associated w ith the 

information propagation. One is the t=constant line which is just the front o f the 

information propagation at time t, see Figure D .l. The other is the bi-characteristics 

whose projection on x-y plane is the trace o f information propagation. Hence the 

t=constant direction and bi-characteristics form a pair o f directions which is physically 

most meaningful. The t=constant vector is normally not perpendicular to the b i

characteristics due to the continuous advection of the apex of the characteristic cone. For
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numerical simulation, the derivatives in the characteristic equations should be defined in 

these two directions.

To determine the bi-characteristics and t=constant vector, the characteristic cone 

equation should be known first. General expressions for these two vectors can be 

established by using Equations (D.2) and (D.3). First the eigen-value, X(0), is expanded 

into a Fourier series:

and u„ v, and C are not dependent on the azimuth 0. For the present system, the higher 

order terms are much smaller than the constant and the first order terms. Thus the terms 

o f second order or higher can be omitted. The subscript "i" w ill be dropped from  now on.

I f  lul « IC I and lv l« IC I at any time and position, the eigenvalue does not vary 

significantly w ith the direction, and information radially propagates away in a ll directions 

at an almost uniform speed. Such characteristics are non-directional characteristics. On 

the other hand, i f  lul » IC I or lv l» IC I at any time and position, then the eigenvalue would 

vary appreciably w ith the direction. Such characteristics are directional characteristics.

(D.4)

in which the coefficients are

(D.5)

(D.6)

o
(D.7)
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The flow characteristics o f the shallow water wave equations (See Appendix C) is a 

directional characteristics, while the wave characteristics is a non-directional 

characteristics i f  the Froude number is much smaller than unity.

Physically (u,v) in Equation (D.4) is the velocity vector o f advection o f the apex o f a 

characteristic cone, shown as the dotted points in Figure D.2. The center line o f the 

characteristic cone is a line whose projection on x-y plane is a streamline. Let U denote 

the velocity vector at the apex o f the characteristic cone, the bi-characteristic vector

S, and t=constant vector S2 are related as

(S, - U ) * S 2 = 0

as shown in Figure D.3

s.-.u

Figure D.3 Illustration o f the relationship between 
bi-characteristics and t=constant vector

(D.S)

I f  the bi-characteristic is written

dx
dt

= Cx = g, cos0 + g2 sin 0 + g3

—  = = h. cos0 + h. sin0 + h:
dt y

(D.9)

(D. 10 >

Then substituting the above expressions for C x and Cy and Equation (D.4) fo r the eigen

value A. into Equation (D.2) gives
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g3 = u, h3 = v

' gt = C, h2 =C  (D .l 1)

.g2 = h i

Then C* and Cj are

C* = u + Ccos0 + g2sin0 (D.12)

C j = v + C s in G -g 2 cosG (D .l3)

The coefficient g2 can be determined by substituting C* and into the equation for the

characteristic cone. Actually Equations (D.12) and (D. 13) may be used to define any line 

vector on the characteristic surface which is not perpendicular to the t-axis. The

t=constant line can be defined by setting t=constant in the equation for the characteristic

cone.

D.3 Bi-Characteristics And CharacteristicEquations In A Special Case

As indicated in Section D.2, the determination o f bi-characteristics depends on the 

knowledge o f the equation o f a characteristic cone. In this section, a brief introduction is 

given about determining the equation fo r the characteristic cone fo r a special system in 

which the characteristics surfaces x3(x,y,/)=constant satisfying

(D. 14)
1 dxj dXj

where x,=(x,y,t), i= l, 2, 3, and Ajj is a 3x3 matrix. Many hydrodynamic and aerodynamic 

systems, including the shallow water wave equations, satisfy Equation(D.14).
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For this special case, Butler (1960) and Richardson (1984) derived expressions for the 

characteristic cone, the bi-characteristics and characteristic equations. The follow ing 

presentation is mainly based on Richardson (1984)

(a) Characteristic Cone

First note that to the normal to characteristic surfaces x 3 (x,y,t)=constant is

proportional to 9x3 /  5xt . Equation (D.14) may then be replaced by

where Lj are the direction cosines o f the normal to the surfaces X3 =constanL Equation 

(D.15) indicates that the surfaces x 3 (x,y,t)=constant satisfying Equation (D.15) touch a

quadric cone. Also there may be an infinite number of characteristic surfaces through 

each point because the normal vector Lj is not uniquely defined. The in fin ity ' o f the 

characteristic surfaces may be identified by a parameter <{>, 0<<}><27t; <j) w ill also identify 

the particular surface x 3=constant.

A ll surfaces x 3=constant satisfying (D.14) w ill be inscribed by a cone, which may be 

fu lly  described by two independent parameters, <{> and x, i.e.,

where x is a measure o f time for a point moving from the apex o f the cone to a subsequent 

point, as shown in Figure D.4. <J)=constant identifies curves on both the characteristic 

cone and characteristics surfaces. These curves are called bi-characteristics. The surfaces 

x=constant are time-constant planes cutting through the characteristic cone.

(D.15)

Xj = x i (<)>,T) (D.16)

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

apex, P

...1

Figure D.4 Parametrization o f a Characteristic Cone 

The characteristics plane at a point, say P, w ill satisfy

LjdXj = 0 (D.17)

where dXj are directions w ithin the characteristic surface.

The characteristic cone X j=x; (<(>, x), being the envelope o f the surfaces x 3=constant, 

w ill satisfy the elim inant o f (D. 15) and (D. 17), and

3L;

Now,

3<t)'dXi °
(D.18)

(D .l 9)

BLand therefore L ,,— - ,  and dxi form three mutually orthogonal vectors fo r each <j>. 
3<J)

aL,The vector Aj.L, may thus be expressed in terms o f L , ,—— and dx,

3L
A .L ^ a L .+ b  — + cdx, (D.2 0)

Now
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Equation (D.21) essentially states that AjjL, is perpendicular to the plane o f tangency to 

the normal cone, or it  is proportional to the bi-characteristic direction. Hence

A j j L j  =  cdXp (D.22)

giving

L j = c A ,,':dxlt (D.23)

The equation o f the cone surface at the point P is thus

A :‘dxidxJ = 0 D.24)

(b) B i-characteristics and C om patib ility Equations

I f  the position at the previous time step is at P, and at the subsequent time step at Q

(see Figure D.4), the line vector from P to Q may be expressed as

dX: = ^ -d T + -^ -d < j) (D.25)
d t  d<{>

let dXj =(C)i -t-m cos0 + v ; sin0)dx be the displacements satisfying the equation o f the 

cone at its apex, where 0 is the orientation, and g„ and V; are the coefficients to be

determined. This is so for suitable |ii, and Vj for 0 <0< 2k, which satisfy

- A ij Ci£j = A ij M-ify, = Ay v lVj
(U.zo)

A ^ V i C j ^ A y V j V j  = A | | ICi v j = 0  

The conditions (D.26) ensure that the directions dx, satisfy the condition (D.24) and 

permit c; to be any vector lying inside the characteristic cone. The direction given by 

(D.25) will lie on the cone through P only i f
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Physically, Equation (D.28) means exactly the same as Equation (D.2), and Equation 

(D.29) the same as Equation (D.3). Furthermore, in Equations (D.28) aind (D.29),

~ (1, C\ , C\ ) and — i  o= (0, C2X,C ] ) , and

(£j cos0 + v ; sin0)Ayl °c(cos<{),sin<j),-2.) (D.30)

where "«=" denotes proportionality.

Thus A '‘ij is just a transformation matrix between a line vector on the characteristic 

cone and a normal vector. Since the two cones, the one through P and the one through Q, 

touch on a common bi-characteristic, the equation o f each bi-characteristic through P is

dXj = (£j + j i j  cos0 + v, sin0)dt (D.31)

(£j +£ij cos0 +Vj s in 0 )A '‘ ^ -  = 0 (D.32)
o<j)

0=0 at x=0 (D.33)

For the shallow water wave equations, the above equations become
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dt = dx

dx = (u + Ccos0)dt

dy = (v + Csin0)dx

_3x . .
cos0-— hsin0—  = 0 

3<j> 3<J>

0 = (j) at x = 0

This relationship can be used to trace bi-characteristic curves. Along 

characteristic directions the characteristic conditions take the form,

A..du„ = B + eJcosOVif^-sinOHif^
dX; dx,

dx

where

A v = A lv + A lv cos0 + A 2v sin0 

Bv = B lv + B l v cos0 + B2vsin0 

Cv = C lv + C lv cos0 + C2vsin0

where a ll the coefficients A iv, B iv, etc. are independent o f 0.

(D.34)

these bi-

(D.35)

(D.36)
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APPENDIX E NUMERICAL DETERMINATION OF BI-CHARACTERISTICS 

AND INTEGRAL CHARACTERISTIC EQUATIONS

As indicated in Chapter 5 and 6, the coefficient matrices are sufficiently complicated 

that the characteristics o f the system must be computed numerically. The equations 

linearly combined through the computed eigenvector in the form o f Equation (6.11) still 

include derivatives w ith respect to x, y and t. To derive the characteristic equations with 

derivatives only in two directions, the bi-characteristics should firs t be determined. Since 

the characteristics are computed numerically, the bi-characteristics and characteristic 

equations must also be estimated numerically. In this appendix, a procedure is developed 

to numerically establish characteristic equations along approximate bi-characteristics.

E.l General Procedure

Linear combination o f the quasilinear governing equations gives

^ # + A ‘ t f + A i f ) = ^ s ' (E1)i=1.4 i=1.4

where q=(H, r\ ,Ub,Vb,) and is a le ft eigen-vector. There are four eigen-vectors for the

present system, accordingly four equations in the form o f Equation (E .l) are available. 

But any one o f them is sufficient to demonstrate the procedure for deriving integral 

characteristic equations. Equation (E .l) is written out as 

3H 9H 8H , 0iq , 5tj

<' T + * ‘ a r a’ * + < l ¥ t b ‘ a r b> >  + 

<3^ + c , a ^ tC y^ +<4^ + d l ^ + d y * i .  „ s  < E ' 2 )

at Bx y ay at ax y ay

where ax= f l A x(l,l) + £2A x(2,l) + f3 A x(3,l)-i-£4Ax(4,l), and ay, bx,... are sim ilarly
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(E.3)

derived.

The fact that Equation (E.2) can always be transformed to an equation w ith 

derivatives only in two directions suggests a hypothetical equation:

m i(c ‘ M  + c 1 M  + c '  M )  +  m ,(C ‘ f U c *  f a  + c >
‘ 9t x 9x - 9y 1 9t 1 9x y 9y

^ ( C ^ . C 1 ^  +  C' ^ L j  +  m . c c ^  + C ' ^ + C  ^ 4
3 ‘ 9t x 9x y 9y 4 1 9t x 9x y 9y

+ n , (C2 C2 | 5  + C2 S  + n ,(C2 - S  + C2 ^5 + C2 | 3 )
‘ 9t x 9x y 9y 1 9t x 9x y 9y

+ M C2^  + C2^  + C2^ ,  + „4(C2^  + C2^ +C2^ )  = S 
1 9t x 9x y 9y ‘ 9t x 9x y 9y

where ( C | , ) and ( C f , Cj;, C j ) are two vectors in (x-y-t) space, and mi and n; are

coefficients to be determined. Equation (E.3) is equivalent to

. dh a dt] , du . dv dh dq du dv 
L  — + £, —- + f , — + t ,  — + n . — + n 2 —  + n , — + n . —  = S (E.4)
1 ds 2 ds 3 ds ds 1 dz 2 dz 3 dz 4 dz

where

T = c ' ^ + c ' * - r + c > i r  ® -5)ds 9t 9x 9y

and

- i  = C ; | - + c : i - + C ; i -  (E.6)
dz 9t 9x 9y

Comparing the terms in Equation (E.2) w ith their counterparts in Equation (E.3) gives

nqCf + n tC f = n^C * + = ax, n q C j.+ n tCy = ay

m2C{ + n2C f = t 2, m2C x + n 2C x = bx, m 2Cy + n2Cy = b y
(E.7)

m 3 C t + = ^3 ’ ^ 3 ^x  "*"^3 ^'x — mjCy + n 3C y — Cy

m4C{ + n 4Ct2 = f 4, m4C x + n 4Cx = dx, m4C y + n 4C y = d y
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Eequation (E.7) gives 12 constraints for 14 unknowns, i.e. C j, C^, Cly, C f ,  C \ ,  Cy, mi, 

m2 , m3, nu, n i, n2, n3, and ru. But some o f the unknowns can be absorbed into other 

unknowns, fo r example, mt may be absorbed byC j, and ni byCf, or vice versa. This

would lead to 1 2  constraints for the same number o f unknowns.

As indicated in Appendix D, there are infinite pairs o f directions on a characteristic 

surface which could satisfy Equation (E.3). This implies that the 12 constraints in 

Equation (E.7) are not linearly independent. In this study, the pair consisting o f bi- 

characteristic direction and the t=constant direction on the characteristic surface is o f 

interest.

Let the bi-characteristic vector from a point be denoted by (C{, C.J, Cy), and the 

t=constant vector by (C j\  C i;, C y). By definition (see Appendix D), C f =0.

Setting C f equal to zero and factoring C[ into m; (This is equivalent o f setting C j= l ,  

then C\  andCy physically represent the information propagation speeds in the x and y 

directions; see Appendix D fo r details), the four constraints in the first column o f 

Equation (E.7) become: m i=^i, m2= f2, m3=(3, and r r u ^ -  Substituting the values for m, 

into the remaindering constraints in Equation (E.7) gives

( A + n |C X -  ax, I  jCy + njCy == ay

* A , +  n 2C x = bx, f 2Cy + n2C* = by

( A +  n 3C x = Cx* f 3Cy + n 3Cy = Cy

+  n 4 C x = d x - f 4Cy + n 4Cy = d y

By inspection, one o f ni, n2, n3 and m may be factored into and Cy. This would
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further eliminate one unknown and leave a total o f 7 unknowns. This also implies that 

the eight constraints in Equations (E.8) are not linearly independent. Only a nontrivial 

unknown can be factored into other unknowns. Since the current system is partially 

sim ilar to the shallow water wave equations, a careful examination about the 

characteristicequations for the shallow water wave equations suggests that iu  be set at 

unity.

As established in Appendix D, the follow ing relationships exist for the b i

characteristics vector and t=constant vector:

C* cos0 + Cysin0 = X (E.9)

cos0 + Cy sin 9 = 0 (E.10)

where X is an eigenvalue for a direction 0. Since X and 0 are known, Equations (E.9) and

(E.10) are linear, and preferable to those in Equation (E.8) which are usually nonlinear.

By using Equations (E.9) and (E.10), it can be shown that the constraints on the two 

columns in Equation (E.8) are linearly dependent. A  brie f proof is given here.

According to the definition for a left eigen-vector

1 (A xcos0 + A ysin0) = A.-? (E . l l )

where Axand A y are the coefficient matrices, as in Equation (E .l). W riting out Equation 

(E. 11) results in four equations:

X = (axcos0 + ays in0 ) / f ,  (E.12)

X = (bx cos0 + by s in 0 ) / i 2 (E.13)

X = (cx cos0 + cy s in0)/ (E.14)
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X = (dxc o s 0 + d ys in 0 ) / f4 (E.15)

Now the two constraints on the fourth row in Equation (E.8) are used to prove that they 

are linearly dependent. Notice that iu  is set at unity. By expressing Cy as a function o f

Cx from Equation (E.9) and Cy as a function o f C x from Equation (E.10), and 

substituting the functions for Cy and Cy into the constraint on the second column gives

. X - C ‘ cos0 Cxcos0
( 4 ------ r 5 -------+ ~ - ~ v (E .l6)

sm0 sin0

which can be organized as

, 1 , - 2  ^ 4 - d ysin0
  (E. 17)

C O S 0

The right side o f the above equation is dx according to Equation (E.15). Hence these two

constraints are linearly dependent. Sim ilarly, the two constraints on the other rows can be

proven linearly dependent.

Equations (E.8) through (E.10) give six linearly independent equations for seven 

unknowns. By choosing Cx as a free parameter, the six other unknowns can be related to 

C* as

C*. = ( X - C x cos 0 ) / sin 0 (E .l 8)

C l = d x - t 4C[  (E-19)

C ; = -c ta n 0 (d x - ( 4C‘ ) (E.20)

a —P C 1
n, = x 1 j (E.21)

' dx - f 4C'x
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One more constraint must be introduced in order to have unique solutions. The 

equation o f the characteristic cone would provide this necessary constraint. Since the 

characteristic cone differs significantly for different families o f characteristics, it is 

necessary to discuss each fam ily individually. The flow characteristics is not used in the 

numerical scheme proposed in Chapter 6, so it w ill not be discussed.

E.2 Approximate Equation For The Wave Characteristic Cone

Since the wave characteristics o f the current system is very sim ilar to those o f the 

shallow water wave equations, it is assumed that the cone o f the wave characteristics can 

be expressed in the form

where C, u and v are determined by Equations (D-5) through (D-7) in Appendix D. W ith 

Cx =dx/dt and C =dy/dt, the above equation can also be written as

Since the bi-characteristics also lies on the cone, CxandC^ salso atisfy Equation (E.25). 

Approximating the eigenvalue X by C+ucos9+vsin0. and solving for C x and C^ from 

Equations (E.25) and (E.9) gives

(dx -  udt)2 + (dy -  vdt)2 = (C d t)2 (E.24)

(Cx - m ) 2 +  (C  - v ) 2 = C: ( E.25)

C'x = u + Ccos0 (E.26)
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Cy = v + C sin 0 (E.27)

Once C‘ and Cy are solved, the rest o f unknowns can be obtained from Equations (E .l8) 

through (E.23).

Numerically, C, u and v can be computed by using the eigen-values in four directions, 

normally in 0, Jt/2,7t, 37t/2:

C = (^e=o + 8̂=)c/2 + ê=ic +  ̂ e=3ic/2)  ̂4 (E.28)

u = [(X cos 0)9=o + (k  cos 0)9=lc/2 + (X cos 0)9=It + (X cos 0)9=3!C/2) /  4 (E.29)

v = [(Xsin0)9=o+(Xsin0)e=re/,+ (X s in 0 )e=T+(Xsin0)9=3lt/2) / 4  ' (E.30)

E3 Approximate Equation For The Energy Characteristic Cone

A typical characteristic cone o f wave energy propagation is shown in the Figure E. 1. 

In contrast to wave characteristics, there is no backward transmission for wave energy in 

this model. t

<t> wave 
* advance

♦
x

Figure E. 1 Sketch O f The Energy Characteristic Cone 

The equation o f the energy characteristic cone is:

(dx)2 + (dy)2 = [Ce • d t]2 (E.31)

and Ce may be approximated by
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C.(©) = A.c - f ( 0 -q » (E.32)

where is the computed eigenvalue corresponding to wave energy propagation, and f(0- 

0) is a function taking account o f the fact that there is no backward propagation, in form:

f(Q _ lcos(0 ~ <P)|+ C0S(Q ~ 9) _
2 cos(0 -  cp)

for |0 -  <p| < —
1 1 2 (E.33)

Otherwise

ThenClx andC^ can be determined from the equation o f the characteristic cone and

Equation (E .l8). Under normal wave conditions, the eigen-value for the energy 

characteristic can be approximated by Cgcos(0-cp), as supported by Figure 6.1, where Cg 

is the wave group speed. Substituting K  = Cgcos(0-(p) into Equations (E.33) and (E.18), 

and solving C[  andCj, gives

C jj =A.e cos0 = Cg cos(0-cp)cos0

it (E-34^
Cy =A,esin0 = Cg cos(0-9)s in0 for |0 — cp| < —
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